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ABSTRACT

In this contribution, the Helmholtz decomposition of a
compressible flow velocity field into vortical and com-
pressible structures is implemented using a finite element
framework and physics-informed neural networks. These
two implementations of Helmholtz’s decomposition are
compared for a verification example and a 2D mixing
layer flow. The work shows how neural networks can
leverage physical knowledge to perform the inverse task
of post-processing a compressible flow field into subparts.
Furthermore, different input variables, network setups,
network parameters, network types, and formulations of
the objective function for the optimizer are investigated
and compared to each other. The physics-informed neu-
ral network formulation results on the verification exam-
ple outline promising directions for further applications to
post-process compressible flow fields.

Keywords: Aeroacoustics, Neural Networks,
Physics-Informed Neural Networks

1. INTRODUCTION

In aeroacoustic modeling, flow and sound’s interaction
effects and distinct properties have been of great inter-
est [1, 2]. First numerical investigations based on the fi-
nite element method to compute the Helmholtz decom-
position of high-fidelity compressible aeroacoustic fields
were studied in [3, 4]. Therewith, the compressible scalar
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and vortical vector potentials are uniquely obtained by
the used formulation in conjunction with mass regulariza-
tion and the infinite mapping layer [5]. In general, the
Helmholtz decomposition is not unique and poses an in-
verse problem.

Issue 1: The calculation of Helmholtz’s decomposi-
tion by solving a set of partial differential equations [4],
the so-obtained potentials are not uniquely defined. Fur-
ther constraints are needed to adequately fulfill the system
of equations. In particular, the source term of some wave
equations is based on the compressible potential [6] and
therefore, uniqueness of the potential is required.

Issue 2: Furthermore, the separation at any boundary
is not yet defined by the underlying physical processes.
The boundary conditions of the separated potentials are
generally expressed in the following way: The mathemat-
ical theory suggests that the tangential boundary compo-
nents are Neumann boundaries of the vortical part. In con-
trast, the normal vector components at the boundary de-
scribe the Neumann boundary for the compressible part.
Generally, this assumption at the boundary is oversimpli-
fying. In the discussion of the present article, correlations
of the presented flow data were analyzed for a prospec-
tive improvement of the boundary condition to enhance
the theory of Helmholtz’s decomposition in aeroacoustics.

In the present work, the formulation of the newly de-
veloped implementation using a physics-informed neural
network (PINN) implemented with PyTorch is presented
[7,8]. The PINN implementation incorporates physically-
based constraints to address issue 1, and the a-priori data
analysis identifies a method to address issue 2. With
this information, the existing finite element method im-
plementation can be enhanced in the future. The simula-
tions are applied to a 2D isothermal mixing layer flow [6].
For illustration, a schematic view of the configuration is
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shown in figure 1. This figure shows vortices and their
pairings at a period Tp = 2π/ωp = 2/f can be observed
at the center of the shear zone. The vortex pairings gener-
ate acoustic waves at a frequency f/2 in the acoustic field,
as seen in figure 1. The mixing layer is centered at y = 0

y x

l1

l2

Figure 1. Schematic view of the mixing layer and the
three evaluation lines of the results. Instantaneous
vorticity and fluctuating pressure fields are repre-
sented at the shear zone’s center and periphery.

and the velocity u = [ux, 0]
T at the inflow boundary con-

dition is given by the hyperbolic-tangent profile

ux(y) =
U1 + U2

2
− U2 − U1

2
tanh

(
2y

δω

)
(1)

where U1 = 0.3c0 and U2 = 0.6c0 are the veloci-
ties of the slow and rapid flows, respectively, and
δω = (U2 − U1)/max(|dux/dy|) is the vorticity thick-
ness at the upstream boundary which provides a Reynolds
number of Reω = δω(U2−U1)/ν = 2000, where ν is the
kinematic viscosity and c0 is the speed of sound.

The paper is organized as follows. In sec. 2, we will
describe the fundamentals of Helmholtz’s decomposition,
its PINNs implementation, training, and verification. Sec-
tion 3 describes the benchmark against an implementation
using the finite element method. The following sec. 4 de-
scribes the results applied to the mixing layer problem.
Finally, the paper is concluded in sec. 5.

2. NEURAL NETWORK, TRAINING AND
VERIFICATION

The neural network is set up in different variants and
verified accordingly. In general, when calculating the

Helmholtz decomposition, an equation for the scalar po-
tential (compressible part) and one for the vector poten-
tial (vortical part) is solved. The compressible part of
Helmholtz’s decomposition is the solution of the inhomo-
geneous Neumann problem

∇ · ∇ϕ = ∇ · u′ , (2)

with n · ∇ϕ = n · uc. In 2D, the vortical part of
Helmholtz’s decomposition on a concave domain is the
solution of the inhomogeneous Neumann problem

−∇ · ∇(A · ez) = ∇× u′ , (3)

with A× n = uv × n.

2.1 Network and objective function type

Fully connected layers define the neural network with
later specified width and depth. Two different cost func-
tion types are used to define (i) a segregated and (ii) a
monolithic HelmholtzNet. The segregated HelmholtzNet
consists of two neural nets, where one models the scalar
potential part and the other the vector potential part.
Within the monolithic framework, both equations are sat-
isfied by one neural network.

2.1.1 Segregated HelmholtzNet

This section’s PINN loss function is modified to comply
with the individual decomposition equations used to ob-
tain the analytical solution in Tab. 1 and Tab. 2. In this
sense, the loss function of the scalar potential PINN is

L(x, y) =
1

Npde

Npde∑
i=1

[∇ · ∇ϕi −∇ · u′(xi, yi)]
2

+
1

Npde,bc

Npde,bc∑
l=1

[((∇ϕl) · n]2 ,

(4)

with Npde,bc being the number of boundary points and
n the normal of the boundary. The loss function of the
vector potential PINN reads as

L(x, y) =
1

Npde

Npde∑
i=1

[∇ · ∇(Ai · ez) +∇× u′(xi, yi)]
2

+
1

Npde,bc,h

Npde,bc,h∑
l=1

[((∇×Al)× n]
2

+
1

Npde,bc,ih

Npde,bc,ih∑
l=1

[((∇×Al)× n− u′(xl, yl)× n]
2
,

(5)
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with Npde,bc,h being the number of boundary points of
the homogeneous boundary condition and Npde,bc,ih the
number of boundary points of the inhomogeneous bound-
ary condition. It is important to note that both of these cost
functions supply some hidden information at the bound-
aries where

n · (∇∇ · u′) ̸= 0 (6)

for time t.

2.1.2 Monolithic HelmholtzNet

Within this section, the monolithic HelmholtzNet is de-
rived based on the coupling cost function and getting rid
of the supplied hidden information to the network. In this
sense, the following cost function is obtained

L(x, y) =
1

Npde

Npde∑
i=1

[∇ · ∇ϕi −∇ · u′(xi, yi)]
2

+
1

Npde,bc

Npde,bc∑
l=1

[((∇ϕl) · n]2

+
1

Npde

Npde∑
j=1

[∇ · ∇(Aj · ez) + ω′
z(xj , yj)]

2

+
1

Npde,bc

Npde,bc∑
l=1

[((∇×Al)× n]
2

+

 1

Npde

Npde∑
l=1

(∇×Al) · (∇ϕl)

2

+
1

Npde

Npde∑
m=1

[∇×Am +∇ϕl − u′(xm, ym)]
2

+ ϵ
1

Npde

Npde∑
m=1

[∇×Am]
2
+ ϵ

1

Npde

Npde∑
m=1

[∇ϕl]2 ,

(7)

with the last two terms minimizing the vortical and
the compressible energy content of the obtained fields.
Npde,bc,const is the number of boundary points where
n · (∇∇ · u′) = 0 for a timestamp t. The monolithic
network is prepared in the same fashion as the segregated
PINN, except that the output layer contains two neurons,
one for the scalar potential and one for the vector poten-
tial, and the number of epochs is increased to 8.000.

2.2 Information and input data

2.2.1 Data preparation and normalization

The computational domain coincides with the 2D flow do-
main of the direct numerical simulation. It uses flow ve-
locity data at collocation points located at the finite differ-
ence point coordinates. The loss function is evaluated in
these collocation points and is selected according to the
monolithic or segregated HelmholtzNet description. In
the current version of the HelmholtzNet, no data normal-
ization was applied.

2.2.2 The HelmholtzNet based on PINN

The network is set up according to the PINN setup, either
as a segregated net consisting of one output layer neuron
or the monolithic net using two neurons, one for the scalar
potential and one for the vector potential. In this case,
the auto-differentiation algorithms of the neural network
can be used to determine the necessary derivatives for the
partial differential equation constraints.

2.2.3 The HelmholtzNet using additional information

The network is modified such that the input layer is sup-
plied with additional data: besides

{x, y}

also
{u′, ∇ · u′, ∇× u′}

are given as input information. This results in 2+Ni neu-
rons for the input layer, where Ni is the number of neu-
rons taking care of additional information provided. The
network with additional information uses a hidden layer
with a total number of Npde + Ni neurons. In this case,
the derivatives of the network are implemented by the
gradient function for non-uniform grid spacing on multi-
dimensions.

2.3 Network specifications

The network has the following structure of fully connected
linear layers: The input layer takes the 2+Ni dimensions
as data input. This input layer is fully connected to the
next layer consisting of

floor(2
√
Npde) (8)

neurons. In total, a number of

floor(
√
Npde/2) (9)
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hidden layers are used. The output layer of the seg-
regated network has one output for either the scalar
potential (scalar potential PINN) or the vector poten-
tial (vector potential PINN). In contrast to that, the
monolithic net has two outputs. The sequential lay-
ers have a tangent-hyperbolic activation function. The
stopping criteria of the used Limited-memory Broy-
den–Fletcher–Goldfarb–Shanno (LBFGS) algorithm are
set to 3000 epochs, or 50000 function evaluations, de-
pending on which one is satisfied first. Kaiming He initial-
ization is used to initialize the network [9]. The training
was conducted on an AMD Ryzen 7 PRO 5850U proces-
sor with 1.9 GHz.

2.4 Analytic benchmark

This analytic example of Helmholtz’s decomposition
serves as a verification of the PINN implementation in Py-
Torch [10]. A velocity field of the form

u = (u0 + sin(πx) cos(ωt)− y cos(ωt))ex

+ x cos(ωt)ey

is prescribed on the domain Ω = [0, 2]
2. The mean veloc-

ity field is not subject to decomposition ⟨u⟩ = u0ex. The
fluctuating velocity field comes with a vorticity distribu-
tion of

ω′ = ∇× u′ = 2 cos(ωt)ez

and a dilatation of

∇ · u′ = π cos(πx) cos(ωt).

The compressible part of Helmholtz’s decomposition
is the solution of the inhomogeneous Neumann problem
(2). The solution

uc = ∇ϕ

and the conjugated field

u∗
v = u− uc = u−∇ϕ

are L2-orthogonal. The obtained solution is given in Tab.
1 with further details provided in [11]. Performing the
procedure for the vortical part of Helmholtz’s decompo-
sition uv as given in (3), the analytic results are obtained
and reported in Tab. 2. The FEM-based solution and the
comparison to the analytic solution are reported in [3]. In
the next step, the performance of the various PINN imple-
mentations is evaluated and compared to the preliminary
results of [11].

Table 1. Helmholtz’s decomposition - The com-
pressible part of the velocity, based on the scalar po-
tential at t = 0 [11].
Scalar potential Complementary field
ϕ = − 1

π cos(πx)
uc = sin(πx)ex u∗

v = u′ − uc = −yex + xey

Table 2. Helmholtz’s decomposition - The incom-
pressible part of the velocity, based on the vector po-
tential at t = 0 [11].
Vector potential Complementary field
Az = −1

2y
2 − 1

2x
2

uv = −yex + xey u∗
c = u′ − uv = sin(πx)ex

2.5 Verification

Inside the decomposition domain, the number of training
data points of the neural network are varied systematically
from the set

Npde ∈ {10, 20, 40, 80}

and the results are reported. The two objective function
types (segregated and monolithic) are studied. Further-
more, the use of additional information as network input
is enriched in two steps, firstly adding the respective right-
hand-sides ∇·u′ and ∇×u′, and secondly the underlying
flow field u′. This step is only carried out for the mono-
lithic network. In total, this comprises 16 different net-
work configurations.

2.5.1 Accuracy and Performance of the segregated and
monolithic HelmholtzNet

The relative mean squared error (MSE) of the PINN to the
analytic solution

e =

∑Npde

i=1 [∥ uPINN − uANA ∥2]2∑Npde

i=1 [∥ uANA ∥2]2
(10)

where uPINN is the solution of the PINN, uANA the re-
sult of the analytic solution, and ∥ uANA ∥2 the L2

norm of the velocity. Based on this, the following er-
rors are determined and reported in Tab. 3 for the seg-
regated HelmholtzNet, and in Tab. 4 for the monolithic
HelmholtzNet. Both networks are supplied with input
(x, y) and implemented using PyTorch. With increasing
resolution, the error drops accordingly.
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Table 3. The relative MSE from the segregated HelmholtzNet with input (x, y) in PyTorch [11].

Error of compressible part Error of vortical part
N Training time Training loss Error Training time Training loss Error

10 1.86s 8.86e-06 0.1183% 1.05s 3.09e-06 0.0324%
20 1.73s 4.25e-06 0.1096% 2.77s 1.04e-06 0.0218%
40 8.53s 1.69e-06 0.0850% 4.71s 6.89e-07 0.0214%
80 44.55s 1.14e-06 0.0415% 33.78s 8.93e-07 0.0196%

Table 4. The relative MSE from the monolithic HelmholtzNet with input (x, y) in PyTorch [11].

N Error of compressible part Error of vortical part Training time Training loss
10 0.403% 0.190% 2.96s 7.817e-04
20 0.249% 0.099% 12.00s 6.902e-05
40 0.095% 0.059% 45.98s 1.894e-05
80 0.081% 0.047% 169.99s 1.451e-05

2.5.2 Accuracy and Performance of the monolithic
HelmholtzNet with additional input information

Within this section, the performance of the monolithic
HelmholtzNet with additional information as input is dis-
cussed. The errors of the compressible and vortical parts
are determined by eq. (10) and reported in Tab. 5 and
Tab. 6. The error of the vortical and compressible parts de-
creases with the spatial resolution, and the networks have
comparable accuracy.

3. BENCHMARKING METHOD

3.1 Finite element method

First, the finite element implementation in openCFS based
on the weak formulation is discussed [12]. In the previous
investigation [4], the coupled identification of a unique
separation of a vector field in vortical and compressible
parts is transformed into two individual equations. This
section presents the weak formulation of (i) the individ-
ual scalar potential formulation that computes the com-
pressible part, and (ii) the vector potential formulation that
computes the vortical part. For further information, the
authors refer to [4].

3.1.1 Scalar potential part

Regarding Helmholtz’s decomposition, the weak formula-
tion of the scalar potential with mass regularization yields∫

Ω

∇ψ · ∇ϕdx+

∫
Ω

ϵψϕϵ dx︸ ︷︷ ︸
Regularization

−
∫
∂Ω

ψ(∇ϕ · n ds)︸ ︷︷ ︸
Boundary

=

∫
Ω

ψ∇ · u′ dx ,

(11)

with ϵ being the regularization factor and ψ the test func-
tion. Using this equation, the scalar potential ϕ can be de-
termined uniquely if appropriate boundaries are imposed.
In practice, an accurate description of the boundary con-
dition is not known explicitly.

3.1.2 Vector potential part

The weak formulation of the vector potential with mass
regularization reads as∫

Ω

(∇×A′) · (∇×A)dx+

∫
Ω

ϵA′ ·Adx︸ ︷︷ ︸
Regularization

−
∫
∂Ω

A′ · ((∇×A)× n)ds︸ ︷︷ ︸
Boundary

=

∫
Ω

A′ · ω′dx ,

(12)
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Table 5. The relative MSE from the monolithic HelmholtzNet with input (x, y,∇ · u′,∇× u′) in PyTorch.

N Error of compressible part Error of vortical part Training time Training loss
10 8.74% 2.65% 25.59s 5.894e-03
20 1.78% 0.85% 25.33s 2.364e-04
40 1.04% 1.39% 25.73 3.092e-04
80 0.66% 0.31% 145.14s 4.005e-05

Table 6. The relative MSE from the monolithic HelmholtzNet with input (x, y,∇ · u′,∇ × u′, u′x, u
′
y) in

PyTorch.

N Error of compressible part Error of vortical part Training time Training loss
10 10.24% 4.49% 12.98s 4.323e-03
20 2.23% 2.37% 46.84 3.170e-04
40 1.81% 3.41% 49.63s 2.314e-04
80 1.14% 1.87% 101.95s 9.130e-05

a)

(∇∇ · u)x = −2.60 · 10−6ux − 0.0012

R2 = 0.861

b)

(∇∇ · u)y = −2.51 · 10−6uy − 2.29 · 10−5

R2 = 0.956

Figure 2. Scattered data plot of the relation between the compressible waves and the gradient of the dilatation
on the slow-flow side of the mixing layer.

with A′ being the test function. Using this equation, the
vector potential A can be determined uniquely if appro-
priate boundaries are prescribed.

4. MIXING LAYER RESULTS

According to the theory of Helmholtz decomposition, the
FEM and PINN methods are applied to a DNS simula-
tion of a mixing layer. First, the DNS field and the sim-

ulation input (fluctuating dilatation and vorticity) are an-
alyzed. This is followed by the velocity results obtained
by the FEM and PINN implementations. For this work in
progress and the application example, only the segregated
version of the PINN with additional information predicted
reasonable results which are reported here.
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4.1 Data analysis and linear predictor

The underlying data was investigated before conducting
the machine learning procedures. The data included the
following data sets

{x, y,∇×u,∇·u, ux, uy, |u|,
(∇∇·u)x, (∇∇·u)y, |∇×u|}

of the problem to identify possible input features that
might be of value for the learning algorithm [8]. By Pear-
son’s correlation, we determined that the correlation factor
is -0.92 for (∇∇·u)x, ux and -0.98 for (∇∇·u)y, uy . In-
terestingly, in Fig. 2, it is shown that the gradient of the
dilatation has a direct connection to the compressible ve-
locity in regions of low vorticity. This preliminary finding
helps to improve the boundary conditions even for the tra-
ditional finite element solver solving Helmholtz’s decom-
position. Based on this correlation, a regression is trained
for the data pairs

{ux, (∇∇·u)x}

and
{uy, (∇∇·u)y}

. This simple linear predictor can be used to estimate
the compressible velocity within regions of low vorticity.
The linear regression estimator was trained on the data of
the slow-flow region. Its prediction capabilities were esti-
mated in the region of the rapid flow.

4.2 Line Plots

Figure 3 shows the fluctuating velocity u′l = u′ · nl,
the compressible velocity part computed by the FEM im-
plementation uFEM

c,l = uFEM
c · nl and the compress-

ible velocity part calculated by the PINN implementa-
tion uFEM

c,l = uFEM
c · nl over the line l1 and l2. Line

l1 starts at (118δω, 18δω) and ends at (298δω, 198δω).
Line l2 originates at (118δω,−18δω) and terminates at
(298δω,−198δω). To illustrate the vanishing vortical part
in the periphery, the vortical velocity part computed by
the FEM implementation is added to Fig. 3. Both the FEM
and PINN-based compressible solutions show characteris-
tic acoustic waves and model the compressible solution in
regions with low vorticity compared to the mixing region.
The two solutions agree with the DNS results in the far
field. In addition, the results of the linear regression pre-
dictor are added and show good prediction capabilities for
Fig. 3a. The generalization of the prediction is assessed

by the results of the compressible velocity in Fig. 3b. The
main characteristics like the phase and the order of magni-
tude of the waves are estimated. A slight deviation appears
for the positive humps, which are not clear yet.

a)

b)

Figure 3. Velocity components a) along the line be-
low the mixing layer and b) the line above the mixing
layer. – – u′l of the DNS, · · · uFEMc,l , — — uPINN

c,l , —
— uLINc,l is the prediction based on linear regression,
and — uFEMv,l .

5. CONCLUSION

In this paper, the inverse task of post-processing a com-
pressible subsonic flow field into sub-parts by Helmholtz’s
decomposition was achieved by different neural network
models. Several versions of loss functions and network
input combinations are tested. The verification example
shows that a PINN algorithm has the potential to perform
Helmholtz’s decomposition of the flow field with respect
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to an analytic solution accurately. Previously used de-
composition variants presented in [4] and the combined
approach (called monolithic HelmholtzNet) show good
agreement. It is shown that the monolithic HelmholtzNet
has the benefit that it requires less knowledge about the
decomposition at the boundary. In addition, the mono-
lithic HelmholtzNet requires a specific implementation of
the derivatives.

The presented results from both the verification exam-
ple and the mixing layer application show promising first
results. The benefit of the finite element framework is that
it solves the fields directly and mitigates a somewhat te-
dious optimization process of the inverse problem. Since
the presented PINN method does not require information
on the decomposition in vortical and compressible effects
at the boundaries, the development of acoustic boundaries
in fluid dynamics can benefit from these results. A first
promising estimate on the compressible flow by a linear
regression estimator is presented.

With a direct comparison of the verification exam-
ples data and the mixing layer examples data, we identi-
fied the following challenges: Firstly, we found that only
the HelmholtzNet with additional information was able
to achieve reasonable results. Secondly, the mixing layer
data has orders of magnitude difference between the com-
pressible and vortical flow fields. Until now, only the seg-
regated HelmholtzNet is capable of predicting the sepa-
rated flow field. Fourthly, the field patterns are localized,
of the same spatial wavelength, and therefore relatively
easy to predict by general functions. Fifthly, the boundary
conditions or constraints for a real-world application ex-
ample can be automated and based on the temporal mean
value of the vorticity relative to the strain rate. Testing
these challenging points, the HelmholtzNet is evaluated
further in the future. To conclude, the presented formu-
lations help analyze, decompose, and post-process com-
pressible flow fields.
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