
10th Convention of the European Acoustics Association
Turin, Italy • 11th – 15th September 2023 • Politecnico di Torino

A SPARSE FREQUENCY-DOMAIN BAYESIAN FILTER FOR
BROADBAND SOURCE IDENTIFICATION

Mathieu Aucejo1∗
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Paris, France

ABSTRACT

In the frequency domain, broadband mechanical sources
are typically identified frequency by frequency using
Tikhonov-like regularization strategies. However, such an
approach does not exploit the spectral characteristics of
the sources to be identified, which can be detrimental to
the quality of the identification, especially in the vicin-
ity of the resonance frequencies of the structure. Based
on this observation, mixed-norm regularization has been
developed and applied with some success. However, this
comes at the price of an increase in the computational cost,
since the problem is solved for all frequencies at once.
In order to reduce the computational cost of the identi-
fication procedure, while taking into account the spec-
tral characteristics of the sources to identify, an origi-
nal frequency-domain Bayesian filter is presented in this
contribution. More precisely, the proposed strategy is
a frequency-domain application of the Bayesian filtering
theory to which Kalman filters belong. To evaluate the
identification ability of the proposed approach, a numeri-
cal experiment is conducted on a simply-supported beam
excited by a broadband point mechanical point force. A
comparison with sparse regularization applied at each fre-
quency independently is also proposed.
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1. INTRODUCTION

Force reconstruction is a class of inverse problems aim-
ing at estimating an excitation field applied on a mechan-
ical structure from a set of vibration measurements. For
solving such a problem in the frequency domain, several
strategies have been implemented such as the virtual fields
method [1] or the force analysis technique [2]. However,
the most widely used technique is certainly the Tikhonov-
like regularization which allows constraining the space of
admissible solutions by incorporating some prior knowl-
edge of the sources to identify. Among this class of meth-
ods, which derived from the Bayesian paradigm, one finds
the ℓ2-regularization (aka Tikhonov regularization) [3],
ℓ1-regularization [4], ℓp-regularization [5] or mixed-norm
regularization [6].

Although these regularization strategies have proven their
efficiency, some drawbacks remain when one wants to
identify the space-frequency characteristics of broadband
excitation sources. In this situation, ℓp-regularization
(p ∈ R+∗) generally solves the problem at each frequency
separately. As a result, large reconstruction errors can
be observed at the resonance frequencies (non-uniqueness
of the solution). Furthermore, this resolution strategy ig-
nores the fact that the excitation spectrum may have some
continuity. While mixed-norm regularization overcomes
this limitation to some extent, it is more computationally
demanding as it solves the space-frequency problem all at
once. Of course, by defining several non-overlapping fre-
quency blocks, mixed-norm regularization can be run in
parallel for each block. However, this requires a careful
selection of the frequency bands.

To overcome the shortcomings mentioned above, it could
be of great interest to approach the problem recursively,
i.e. frequency by frequency while keeping track of the
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spectrum continuity. In the time domain, Kalman filters
are known to offer such a possibility with good recon-
struction performances (see for example Ref. [7]). In this
respect, the adaption of Kalman filtering in the frequency
domain seems to be a promising approach. This strat-
egy has already been successfully applied in the context
of acoustic echo control by Enzner and Vary in Ref. [8].

With the previous idea in mind, the present contribution
aims to introduce a novel Bayesian filter to identify broad-
band and spatially sparse excitation sources in the fre-
quency domain. To this end, this paper is divided into
three parts. The first section is dedicated to the description
of the proposed frequency-domain Bayesian filter. More
specifically, this section introduces the definition of the
state-space representation of the identification problem, as
well as the derivation of the Bayesian filter equations. In
the second part, the filtering algorithm is presented, with
a particular emphasis on the initialization step, which re-
quires a special attention. Finally, a numerical experiment
is implemented to evaluate the reconstruction ability of the
proposed approach and to compare its performance with
respect to ℓp regularization method.

2. FREQUENCY-DOMAIN BAYESIAN FILTER

This section presents the theoretical foundations of the
proposed methodology. A special attention is paid on the
derivation of the state-space model and the corresponding
Bayesian filter.

2.1 State-space representation

Let us consider a linear and time invariant mechanical
structure. In this situation, the noiseless vibration field
x(ω) is related to the excitation field u(ω) by the trans-
fer functions matrix H(ω), which completely determines
the dynamic behavior of the structure under consideration.
This relation is given explicitly by:

x(ω) = H(ω)u(ω). (1)

The state-space representation consists of a state equation,
describing the evolution of the system state between two
frequency steps, and an output equation relating the mea-
sured data to the system state and input.

The state equation is obtained by estimating the vibration
field at a frequency ω+δω, where δω is a small frequency
increment. By applying a first-order Taylor series, one

has:

x(ω + δω) = x(ω) +
∂x(ω)

∂ω
δω +w(ω), (2)

where w(ω) represents the modeling error related to un-
modeled higher order terms. In the following, the model-
ing error is regarded as a process noise, which is supposed
to be a complex Gaussian noise with zero mean and co-
variance matrix Q(ω).

Then, the derivative of the vibration field w.r.t. ω can be
approximated in the following way by using Eqn. (1) and
applying first-order forward finite difference scheme:

∂x(ω)

∂ω
δω ≈ [H(ω + δω)− 2H(ω)]u(ω)+H(ω)u(ω+δω).

(3)
Consequently, the state equation is given by:

xk+1 = xk +B−
k uk +B+

k+1uk+1 +wk, (4)

where xk+1 = x(ωk+δω) and xk = x(ωk). Here, B−
k =

Hk+1 − 2Hk and B+
k+1 = Hk.

Regarding the output equation, it is obtained by assuming
that the noiseless data are corrupted by an additive com-
plex Gaussian noise v(ω) with zero mean and covariance
matrix R(ω). It results that the output equation is such
that:

yk = xk + vk, (5)

where yk is the measured vibration field at frequency ωk.

Finally, the state-space representation is given by:{
xk+1 = xk +B−

k uk +B+
k+1uk+1 +wk

yk = xk + vk

. (6)

It should be noted that the previous formulation is non-
standard, since the state vector at frequency step k + 1
requires the knowledge of the input vector (i.e. excitation
vector) at frequencies k and k + 1. To reduce the state-
space representation to its standard form, a reduced state
xk+1 is introduced. It is mathematically expressed as:

xk+1 = xk +B−
k uk +wk. (7)

In doing so, the state-space representation becomes:{
xk+1 = xk +Bkuk +wk

yk = xk +Dk uk + vk

, (8)

where Bk = B+
k +B−

k and Dk = B+
k .
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2.2 Bayesian filter derivation

The present derivation is based on the unified sequential
Bayesian formulation introduced by the author and his
colleagues in Ref. [9]. It is briefly recalled for the sake
of clarity and is divided into 6 steps:

0. Model definition – It is essentially a rewrite of Eqn. (8)
from a Bayesian perspective:

xk+1 ∼ p(xk+1|xk,uk) = Nc(xk+1|xk +Bkuk,Qk)

yk ∼ p(yk|xk,uk) = Nc(yk|xk +Dkuk,Rk),

where Nc(•|m,Γ) is the complex Gaussian distribution
with mean m and covariance matrix Γ.

1. Initialization – This step requires the prior knowledge
of the initial state and input vectors x0 and u0, as well as
the prediction of the state x∗

1 given the initial measurement
y0. All these requirements are expressed as:

x0 ∼ p(x0) = Nc(x0|x̂0,P
x
0 )

u0 ∼ p(u0) = Nc(u0|û0,P
u
0 ),

where x̂0 and û0 are the known mean state and input vec-
tors, while Px

0 and Pu
0 are the related covariance matrices.

x1 ∼ p(x1|y0) =

∫∫
x0 u0

p(x1|x0,u0)p(x0)p(u0)dx0du0

= Nc(x1|x∗
1,P

x∗
1 ),

where Px∗
1 is the covariance matrix associated to the pre-

dicted mean state vector x∗
1.

2. Input prediction – This step requires the user to define
the predictive distribution of the input vector given all the
measurements collected up to the previous frequency step
k − 1, denoted y1:k−1 = {y1, . . . ,yk−1}. Since our goal
is to promote the spatial sparsity of the excitation field,
the predictive distribution must reflect this behavior. In
this contribution, it is chosen so that:

uk ∼ p(uk|y1:k−1) =

N∏
i=1

Nc(uki|0, τ−1
ki ),

where uki is the ith component of the input vector at the
frequency step k, while τki is the corresponding precision
parameter. N is the number of identification points.

Because each component of the input vector is considered
has an independent normally-distributed complex random

variable, the spatial sparsity is promoted by properly set-
ting the value of the precision parameters (see Ref. [10]).

3. Input estimation – This step consists of applying the
Bayes’ rule to update our prediction of the input vector,
given the information provided by the measurement at the
current frequency step k. After some calculations, not de-
tailed here, it comes:

uk ∼ p(uk|y1:k) ≈
∫
xk

p(uk|xk,y1:k)p(xk|y1:k−1)dxk

= Nc(uk|ûk,P
u
k ).

4. State estimation – This step follows a similar pro-
cedure to that the input estimation. At this stage, it is
also possible to compute the cross-covariance matrix Pxu

k .
This results in:

xk ∼ p(xk|y1:k) =

∫
uk

p(xk|uk,y1:k)p(uk|y1:k)duk

= Nc(xk|x̂k,P
x
k),

while, the cross-covariance matrix is given by:

Pxu
k =

∫∫
xk uk

(xk− x̂k)(uk− ûk)
Hp(xk,uk|y1:k)dxkduk,

where zHk is the Hermitian transpose of zk.

5. State prediction – This step consists of predicting the
state vector at the next frequency step k + 1 given the
estimated state and input vectors at step k, i.e:

xk+1 ∼ p(xk+1|y1:k)

=

∫∫
xk uk

p(xk+1|xk,uk)p(xk,uk|y1:k)dxkduk

= Nc(xk+1|x∗
k+1,P

x∗
k+1).

3. PRACTICAL IMPLEMENTATION

This section details the practical implementation of the
Frequency-domain Bayesian filter introduced in the pre-
vious section.

3.1 General algorithm

Inputs – yk, x̂0, Px
0 , û0, Pu

0 , Pxu
0 , Bk, Dk, Qk, Rk

Outputs – ûk, Pu
k , x̂k, Px

k
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0. Initialization

x∗
1 = x̂0 +B0 û0

Px∗
1 =

[
I B0

] [ Px
0 Pxu

0

Pxu
0

H
Pu

0

] [
I
BH

0

]
+Q0

for each frequency step k > 0 do
1. Input estimation

ik = yk − x∗
k

Pu∗
k = T−1

k with Tk = diag(τk1, . . . , τkN )

Ku
k = Pu∗

k DH
k (DkP

u∗
k DH

k +Rk)
−1

ûk = Ku
k ik

Pu
k = (I−Ku

kD)Pu∗
k +Ku

kP
x∗
k Ku

k
H

2. State estimation

Kx
k = Px∗

k (Px∗
k +Rk)

−1

x̂k = x∗
k +Kx

k(ik −Dkûk)

Px
k = (I−Kx

k)P
x∗
k +Kx

kDkP
u
kD

H
kK

x
k

H

Pxu
k = −Kx

kDkP
u
k

3. State prediction

x∗
k+1 = x̂k +Bkûk

Px∗
k+1 =

[
I Bk

] [ Px
k Pxu

k

Pxu
k

H
Pu

k

] [
I
BH

k

]
+Qk

end

3.2 Computation of the initial state and input
distributions

In contrast to time domain applications, where it is pos-
sible to start the recordings with zero state and input vec-
tors, a careful attention must be paid to the definition of
the filter’s starting conditions in the frequency domain.

Regarding the probability distribution of the initial state
vector x0, a reasonable choice is:

x0 ∼ Nc(x0|y0,R0).

The probability distribution of the starting input vector u0

is supposed to be complex and Gaussian, with mean and
covariance matrix derived from the following Bayesian
regularization:

(û0, τ̂0i) = argmax
u0,τ0i

p(y0|u0)

N∏
i=1

p(u0i, τ0i) p(τ0i). (9)

In the previous equation:

p(y0|u0) = Nc(y0|H0u0,R0)

p(u0i, τ0i) = Nc(u0i|0, τ−1
0i )

p(τ0i) = G(τ0i|αi, βi),

where G(•|α0i, β0i) is the gamma distribution with shape
parameter α0i = 1 and rate parameter β0i = 10−18.

After solving the optimization problem given by Eqn. (9)
from an iterative procedure not described here, it comes
that:

û0 = (H0R
−1
0 H0 + T̂0)

−1HH
0R

−1
0 y0

Pu
0 = (H0R

−1
0 H0 + T̂0)

−1,

where T̂0 = diag(τ̂01, . . . , τ̂0N ).

To complete the initialization process, it remains to deter-
mine the parameters of the complex Gaussian distribution
associated with the reduced state x0. From Eqn. (4) and
Eqn. (7) and assuming that x0 and u0 are uncorrelated,
one has:

x̂0 = x̂0 −B+
0 û0

Px
0 = R0 +B+

0 P
u
0B

+
0

H
.

From what precedes, it is also possible to derive the ex-
pression of the initial cross-covariance matrix Pxu

0 . After
some calculations, one gets:

Pxu
0 = −B+

0 P
u
0 .

3.3 Computation of the estimated input vector

At a frequency step k, it can be demonstrated that the es-
timated input vector ûk is solution of the following mini-
mization problem (see Ref. [9] for details):

ûk = argmax
uk

p(ik|uk) p(uk), (10)

where:

p(ik|uk) = Nc(ik|Dkuk,Rk)

p(uk) =

N∏
i=1

Nc(uki|0, τ−1
ki ).

Unfortunately, since it is far from easy to determine a pri-
ori suitable values for the precision parameters τki, it may
be interesting to consider them as random variables and
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compute their values by optimization. To do this, one has
to extend the previous optimization problem in such a way
that:

(ûk, τ̂ki) = argmax
uk,τki

p(ik|uk)

N∏
i=1

p(uki|τki) p(τki), (11)

where:

p(uki|τki) = Nc(uki|0, τ−1
ki )

p(τki) = G(τki|αki, βki),

with αki = 1 and βki = 10−18.

After convergence of an iterative procedure implemented
to solve Eqn. (11), one obtains the estimated input vector
ûk and the corresponding covariance matrix Pu

k according
the set of equations presented in step 1 of the algorithm
described in section 3.1.

4. NUMERICAL EXPERIMENT

This section aims to validate the proposed Frequency-
domain Bayesian filter (FBF) and compare its perfor-
mance with sparse ℓp-regularization (p ≤ 1) applied at
each frequency separately.

4.1 Problem statement

The structure under consideration is a simply supported
stainless steel beam. The beam is 1 m long, 3 cm wide
and 1 cm thick. The material properties are E = 210 GPa
for the Young’s modulus and ρ = 7850 kg.m-3 for the
density. A structural damping factor is assumed and set to
1%.

Along the beam, a set of 20 accelerometers are mounted
on the structure and one of these sensors is collocated with
the excitation at x0 = 63 cm as presented in Fig. 1.

Excitation Measurements

xz

y

Figure 1: Definition of the numerical experiment

Regarding the excitation spectrum to identify, it is sup-
posed that the structure is excited by a unit point force
between 50 Hz and 1 kHz. The frequency resolution is set

to 0.5 Hz. In this frequency range, the beam has 5 modes
(94 Hz, 211 Hz, 375 Hz, 586 Hz and 844 Hz).

In the present experiment, the noiseless vibration data
have been generated using a finite element model. Then,
they have corrupted by an additive Gaussian white noise
with a controlled signal-to-noise ratio set to 25 dB. On
the other hand, the transfer functions matrices, required to
construct the state-space representation, have been com-
puted analytically from a classical mode expansion using
the first 10 modes of the structure (i.e. up to 2.3 kHz).

To run the proposed filter, it remains to define the covari-
ance matrices Qk and Rk. These matrices are assumed
to be isotropic and constant, i.e. they are defined only by
their variances σ2

x and σ2
y respectively.

Since the process noise reflects our confidence in the evo-
lution model associated with the reduced state xk, the
value of σ2

x must be chosen accordingly. Given the fre-
quency resolution chosen for this application, it is reason-
able to assume that the evolution model is reliable. For
this reason, σ2

x is set to 10−10.

Regarding the measurement noise variance, its value is
perfectly known, since the noise level is controlled. In
practice, however, it has to be estimated either from cali-
bration measurements or from a dedicated procedure. In
this contribution, the measurement noise variance is esti-
mated using a procedure inspired by Ref. [11]. This gives
σ2
y = 0.084 m2/s4, which is close to the actual value of

0.083 m2/s4.

4.2 Application

In this contribution, the results obtained with FBF are
compared to the ℓp-regularization solved at each fre-
quency independently. Here, the value of p is set to 0.5 in
order to promote the spatial sparsity of the excitation field.
Formally, the latter regularization strategy is expressed as:

ûk = argmin
uk

∥yk −Hkuk∥2Rk
+ λ∥uk∥pp,

where λ is the regularization parameter and ∥x∥2R =
xHR−1x.

From a practical point of view, ℓp-regularization is solved
by an Iteratively Reweighted Least-Squares algorithm,
which updates the regularization parameter at each iter-
ation from the L-curve principle (see Ref. [5] for details).
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Fig. 2 compares the space-frequency distribution of re-
constructed excitation source from the FBF and ℓp-
regularization. In particular, it can be seen that the FBF
allows to obtain a source distribution closer to the real one
than the ℓp-regularization, which shows large discrepan-
cies at some resonance frequencies and artifacts.

(a) Frequency-domain Bayesian Filter

(b) ℓp-regularization (p = 0.5)

Figure 2: Comparison of the space-frequency distri-
bution of the reconstructed excitation field

A closer look at the reconstructed force spectrum is pro-
posed in Fig. 3. It confirms that the proposed FBF be-
haves better than the ℓp-regularization, especially around
the resonance frequencies at 94 Hz and 211 Hz. To better
quantify the reconstruction quality, we define the recon-

struction error as:

RE =
∥ûk − uref

k ∥1
∥uref

k ∥1
,

where ûk is the identified force at the point force location,
while uref

k is the reference value (here 1 N).

In the present application, RE = 3.26% for the FBF and
RE = 6.41% for the ℓp-regularization, confirming what
was visually inferred from the inspection of Fig. 3.

FBF
Reference

-reg.

Figure 3: Comparison of the reconstructed force
spectrum

5. CONCLUSION

This contribution has described a novel Frequency-
domain Bayesian filter for the identification of broadband
sparse excitation sources. The present Bayesian filter has
a structure similar to the Kalman-like filters classically
used for time-domain applications. The numerical exper-
iment has demonstrated the potential benefits of the pro-
posed strategy, as it allows to obtain consistent reconstruc-
tions even at resonance frequencies, where sparse regular-
ization generally fails.
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