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ABSTRACT

In acoustic scattering by spherical particles, the scalar ve-
locity potential field can be written in terms of partial
wave expansions using spherical wave functions. The ex-
pansion coefficients – the beam shape coefficients (BSCs)
– embody the spatial information of the field and their ex-
act determination is of utmost importance for reliable cal-
culation of physical quantities of interest such as acous-
tic forces. In this work, the finite series (FS) method,
a widely known method in the realm of optics and light
scattering, is introduced to describe the BSCs of acous-
tic fields. The FS technique relies on Neumann expan-
sion theorem and provide exact expressions for the BSCs
of arbitrary-shaped beams. Examples of calculations with
field reconstructions are presented for acoustic arbitrary-
order Bessel beams. The results represent a first system-
atic approach to alternative methods for describing BSCs
in acoustic scattering by spherical scatterers.

Keywords: acoustic scattering, beam shape coefficients,
finite series method, Gaussian beams, Bessel beams

1. INTRODUCTION

In acoustic scattering by small spherical particles, a
monochromatic, arbitrary-shaped incident scalar acoustic
velocity potential ψi(r, θ, ϕ) is usually expanded into a set
of partial waves using spherical wave functions [1–3]:
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ψi(r, θ, ϕ) = ψ0
i

∞∑
n=0

n∑
m=−n

cpwn gmn jn(kr)P
|m|
n (cos θ)eimϕ.

(1)
where a spherical coordinate system (r, θ, ϕ) is assumed
whose origin OP coincides with the center of the spheri-
cal scatterer. A time-harmonic factor exp(+iωt), with ω
being the angular frequency, will be omitted throughout.

In Eqn. (1), k = 2π/λ is the wave number (λ is the
wavelength in the lossless propagating medium), n and m
are integers (0 ≤ n < ∞, −n ≤ m ≤ +n), ψ0

i is the
complex field strength, jn(.) are spherical Bessel func-
tions of the first kind and order n and Pm

n (.) are associated
Legendre polynomials with Hobson’s convention [4]. The
pre-factors cpwn = (−i)n(2n+1) (“pw” stands for “plane
wave”) are such that, for a plane wave and except for a
phase factor, gmn = 1 for m = 0, ∀n, being 0 otherwise.

The expansion coefficients gmn are the beam shape
coefficients (BSCs) and embody the spatial information
of the wave relatively to a plane wave. They can be ex-
tracted explicitly from Eqn. (1) with the aid of orthogonal
relations for exp(imϕ) and Pm

n (cos θ) [5]. Such a proce-
dure, called the quadrature technique, allows us to write
the gmn ’s in terms of double integrals:

gmn =
1

4πcpwn

(n− |m|)!
(n+ |m|)!

2n+ 1

jn(kr)

2π∫
0

π∫
0

ψi(r, θ, ϕ)

ψ0
i

× P |m|
n (cos θ)e−imϕ sin θdθdϕ.

(2)

There are, in principle, at least two other techniques
which can be introduced to extract analytical expressions
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for the BSCs of Eqn. (1), both of which have been largely
explored for optical fields. The first is an approximate
method which relies on the principle of localization of van
de Hulst that associates rays to each partial wave, those
rays being parallel to the propagation axis and located at
specific transverse distances from it. It is known as the
localized approximation [6, 7], with variants such as the
integral localized approximation [8].

The second method, which is the subject of the
present work, is the finite series (FS) method, first pro-
posed by Gouesbet et al. for optical beams (particularly,
Gaussian beams) in 1988 [9]. The FS invokes Neumann
Expansion Theorem (NET) to provide expressions for the
BSCs in terms of a finite series. In doing so, it avoids the
integral over the polar coordinate θ, which is usually the
most difficult to solve analytically. In addition, whenever
the optical beam exactly satisfies Maxwell’s equations, the
BSCs so derived are exact and the partial wave reconstruc-
tion of the fields will exactly reproduce the intended, orig-
inal electromagnetic wave.

For acoustic beams, both the LA and FS methods have
been largely overlooked. To the best of our knowledge,
no attempts have ever been made to develop and subse-
quently justify acoustic versions of the LA from Eqn. (1).
Besides, the only attempt at introducing the FS approach
for acoustic or ultrasonic beams was made by Zhang et al.
in 2015 [10]. However, no systematic analysis was per-
formed, and the authors limited themselves to Gaussian-
like beams, that is, acoustic fields ψi(r, θ, ϕ) which are
neither solutions to the homogeneous scalar wave equa-
tion nor a solution to its more restricted paraxial version.

Therefore, in this work we formally present the FS
method for acoustic fields. The formulas to be presented
are valid for any arbitrary-shaped complex velocity poten-
tials and not only to Gaussian-like beams. As an example,
we extract the BSCs of arbitrary-order Bessel beams with
relative ease, thus rendering the FS method a robust, new
and promising technique for describing incoming acous-
tic/ultrasonic waves in acoustic scattering. The next sec-
tion presents the mathematical details and computational
calculations and simulations of BSCs and corresponding
reconstructed fields. Then, our conclusions are presented.

2. THE FS METHOD FOR ACOUSTIC FIELDS
AND EXAMPLES FOR BESSEL BEAMS

We start by first considering an equation of the form (see,
e.g. Sec. 16.13 of Ref. [11], where we replaced cylindrical
by spherical Bessel functions):

x
1
2 g(x) =

∞∑
n=0

cn
√
2x/πjn(x), (3)

where x is a real quantity. According to the NET, if the
function g(x) in Eqn. (3) can be Maclaurin expanded:

g(x) =

∞∑
n=0

bnx
n, (4)

then the possibly complex coefficients cn are written in
terms of the coefficients bn by the following relation:

cn =
2n+ 1

2

≤n/2∑
j=0

2
1
2+n−2j Γ(

1
2 + n− j)

j!
bn−2j , (5)

in which Γ(n) is the Gamma function.
To see how one can take advantage of Eqn. (5) to find

explicit expressions for the BSCs of Eqn. (1), let us set
x = kr and choose a particular value for θ, θ = θ0. Mul-
tiplying both sides of Eqn. (1) by exp(−im′ϕ) (m′ is an
integer) and integrating from 0 to 2π, one eventually finds:

x
1
2

∫ 2π

0

ψi(x, θ0, ϕ)

ψ0
i

e−imϕdϕ =

∞∑
n=0

[
π
√
2πcpwn gmn P

|m|
n (cos θ0)

]√
2x/πjn(x).

(6)

In view of that, if

g(x) =
1

π
√
2π

∫ 2π

0

ψi(x, θ0, ϕ)

ψ0
i

e−imϕdϕ, (7)

comparison between Eqn. (3)-Eqn. (5) and Eqn. (6) can
be shown to lead to

gmn =
2n+ 1

2cpwn P
|m|
n (cos θ0)

×
≤n/2∑
j=0

2
1
2+n−2j Γ(

1
2 + n− j)

j!
bn−2j .

(8)

Therefore, if one can find a function g(x) from
ψi(r, θ, ϕ) in accordance with Eqn. (7), which involves
a single integral over ϕ and that can be Maclaurin ex-
panded, the BSCs associated with this particular acous-
tic potential field can be readily calculated from Eqn. (8).
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In Eqn. (8), the choice of θ0 can lead to singularities if
P

|m|
n (cos θ0) = 0. A usual choice is θ0 = π/2 [10, 12],

for which P |m|
n (0) ̸= 0 if n −m even, and 0 if n −m is

odd. In this case, Eqn. (8) provides only a subset of the
full set of BSCs, viz., those for which n−m is even. The
other subset (n − m odd) can be found by working with
the derivative of ψi(r, θ, ϕ) with respect to cos θ and using
the fact that, for θ0 = π/2, dPm

n (cos θ)/d cos θ ̸= 0 when
n−m is odd, being 0 when n−m is even.

So, for θ0 = π/2 (or cos θ0 = 0), Eqn. (8) is valid
for n − m even. Differentiating Eqn. (1) with respect to
cos θ and proceeding as before, one then finds the subset
of BSCs for n−m odd. Without going into all the details,
it can be shown that:

g(x) =
1

π
√
2π

∫ 2π

0

1

ψ0
i

dψi(x, θ, ϕ)

d cos θ

∣∣∣
θ=π/2

e−imϕdϕ,

(9)

gmn =
2n+ 1

2cpwn
[
dP

|m|
n (cos θ)/d cos θ

] ∣∣∣
θ=π/2

×
≤n/2∑
j=0

2
1
2+n−2j Γ(

1
2 + n− j)

j!
bn−2j ,

(10)

with the Maclaurin coefficients bn extracted from Eq. (9).
As an example, let us consider an ideal v-th order ar-

bitrary order Bessel beam (BB) propagating along +z:

ψi(r, θ, ϕ) = ψ0
i Jv(kρr sin θ)e

ivϕe−ikzr cos θ, (11)

with kρ = k sinα (kz = k cosα) being the radial (lon-
gitudinal) wave numbers, α being the axicon angle. For
(n−m) even, inserting Eqn. (11) into Eqn. (7) leads to:

g(x) =
√

2/πJv(x sinα)δm,v, (12)

where δi,j is the Kronecker delta. The Maclaurin series
associated with Eqn. (12) follows from the definition of
Bessel functions [5]:

Jv(z) =

∞∑
j=0

(−1)j

j!Γ(j + v + 1)

(z
2

)2j+v

, (13)

so that, after setting n = 2j + v in Eqn. (13) and substi-
tuting it in Eqn. (12), it can be shown that

bn =

√
2

π

ϵ(n; v − 1)(−1)
n−v

2(
n−v
2

)
!Γ

(
n+v+2

2

) (
sinα

2

)n

δm,v, (14)

where ϵ(n;u) = 0 for n ≤ u, 1 otherwise. From Eqn. (14)
that, and as already verified using quadratures [13], the
only non-zero BSCs in Eqn. (8) are those with m = v.

A similar procedure can be applied when (n−m) odd.
Without going into the details, one eventually finds that, in
this case, the Maclaurin coefficients, Eqn. (14) reads as:

bn = −i
√

2

π

ϵ(n; v)(−1)
n−v−1

2 cosα(
n−v−1

2

)
!Γ

(
n+v+1

2

) (
sinα

2

)n−1

δm,v

(15)
which should be used in the context of Eq. (10).

As an example, let f = ω/2π = 2.5 MHz and a BB of
order v = 2 in water. From the above formulas, we com-
pared Eqn. (1) with Eqn. (11) using the FS method. Re-
sults for the field intensity |ψ(r, θ, ϕ)|2 at z = 0 are shown
in Fig. 1 for α = 35◦. To truncate the sum in Eqn. (1), we
adopted Wiscombe’s criterion [14], but lower percentage
error can be achieved if we set a higher maximum n, i.e.,
if we increase the number of partial waves that composes
ψi(r, θ, ϕ) in Eqn. (1). Tests have been conducted for sev-
eral positions in space, and it has been verified that the
equations here presented agree, in the limit n → ∞ in
Eqn. (1), with the values obtained from quadratures [13].

3. CONCLUSIONS

A new method has been proposed for the evaluation of
beam shape coefficients in acoustic scattering based on
Neumann expansion theorem called the finite series. For
velocity potentials which exactly satisfy the scalar ho-
mogeneous Helmholtz equation, the coefficients so de-
rived are exact, thus providing an alternative technique
beyond quadratures. The finite series can be used with
advantage whenever double integrals in the quadrature ap-
proach cannot be solved analytically, which might be the
case of Laguerre-Gauss beams, finite-energy Bessel and
helicoidal beams, and structured beams in general, thus
paving the way for advanced investigations and force cal-
culations in acoustic scattering by spherical particles.
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Figure 1. (a) Original [
∣∣ψori

i (r, θ, ϕ)
∣∣2), Eqn. (11)] and (b) reconstructed [|ψsum

i (r, θ, ϕ)|2, Eqn. (1)] field
intensities at the xy plane (z = 0) for a 2nd order BB with α = 35◦, f = 2.5 MHz, in water (speed of sound of
1540 m/s). (c) Percent error (in logarithmic scale) using Wiscombe’s criterion to truncate Eqn. (1).
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