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ABSTRACT
In recent years, data-driven operator approximation tech-
niques have been explored as a means of solving physi-
cal problems described by ordinary and partial differential
equations. In this paper, solutions to the linear 2D acoustic
wave equation predicted by Fourier neural operator (FNO)
networks are investigated in a square, free-field domain.
The network’s ability to generalise over variable excita-
tion source positions in unseen locations is investigated.
Furthermore, the network is tasked with learning progres-
sively longer solutions in time to assess how the ratio of
input to output data affects network prediction accuracy.
Error between ground truth and predicted simulations is
quantified and examined in an acoustics context.

Keywords: Fourier neural operator, acoustic simulation,
deep learning, FDTD, physics-informed neural network.

1. INTRODUCTION

Wave-modelling methods for room acoustic simulation
such as finite-difference time domain (FDTD) are desir-
able when simulating the acoustic response of a virtual
domain given their inherent handling of complex wave
phenomena like diffraction [1, 2]. FDTD is an inefficient
process of numerical simulation as the domain must be
highly over-sampled during discretisation to mitigate the
effects of dispersion error [3]. As a result, it can take an
impractical amount of time to run a single FDTD simula-
tion when the domain sampling density is high [4]. Al-
though recent advancements in computational power are
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addressing the issue for devices with large amounts of ex-
pendable working memory, this factor still limits the fea-
sible use of FDTD for large-scale room acoustic simula-
tion when compute resources are limited. For this reason,
there is demand for a more time-efficient wave-modelling
method of acoustic simulation that sidesteps the wasted
computation present in an over-sampled FDTD scheme.

In this paper, deep learning techniques and their ap-
plicability to solving acoustic wave equations with vari-
able excitation source positions are investigated. A novel
system of wave-modelled acoustic simulation in two spa-
tial dimensions using Fourier Neural Operator networks
(FNOs) is presented [5, 6]. An improvement in compu-
tational efficiency over FDTD is achieved by represent-
ing the partial differential equation (PDE) that governs
wave behaviour within the free-field domain implicitly as
an FNO network, eliminating the wasted computation of
an over-sampled FDTD scheme. The trained FNO there-
fore maps a space of input functions (these being domain
excitation followed by an arbitrary number of simulated
time-steps) to a space of output functions (the continued
wave propagation until the simulation is complete) [5].

2. ACOUSTIC FDTD SIMULATION

The 2D wave equation is a second-order hyperbolic PDE
describing air pressure u as a function of position (x, y)
and time t [3]. c is a constant describing wave propaga-
tion speed in the medium. An impulse response (IR) can
be sampled from an FDTD simulation by recording the
pressure value at a point on the grid as it evolves from the
moment of excitation until it returns to its fully mixed (or
its ambient) state.

∂2u

∂t2
= c2(

∂2u

∂x2
+

∂2u

∂y2
) (1)
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Figure 1. 4-point rectilinear 2D FDTD scheme to
compute pressure at the grid point (x, y) at the next
time step index t+ 1.

FDTD has become one of the most widely researched
approaches to acoustic simulation given its ability to sim-
ulate a broadband impulse response in a single pass [1,2].
In the 2D-plus-time case explored in this paper, the acous-
tic wave equation (eq. 1) is solved numerically by dis-
cretising the time and space dimensions of the target
domain. Space and time are represented as a three-
dimensional matrix of the form (x, y, t). The air pressure
at a position in the grid is computed from neighbouring in-
dices in space and time as illustrated in figure 1. This pro-
cess is repeated for all indices to complete a single update
in time, which is in turn repeated until a desired number
of time steps have elapsed.

Although FDTD simulations can operate in parallel
and the individual finite-difference operations are simple
multiplications they are still considered to be computa-
tionally intensive tasks given the typically vast number of
operations that must be performed [7]. FDTD schemes
with more than one spatial dimension are also subject to
dispersion error as a result of domain discretisation. There
is an inherent loss of information when quantising the par-
ticles of air within a domain and its boundaries to a grid as
the number of sampled points will be linearly-spaced and
far fewer in number. Ideally, waves travelling in any di-
rection through the grid should propagate equally far; the
direction travelled and the time taken should be linear in
all directions. However, depending on the angle of prop-
agation, part of the wavefront will travel through more
grid points than other portions of the wavefront. The re-
sult is anisotropic propagation of error through the FDTD
system that becomes more apparent in higher frequency
ranges [2].

Dispersion errors manifest as phase distortions, which

in turn restricts the quality of IRs retrieved from the sim-
ulated data. This dispersion error can be audible be-
tween simulated and measured environments, limiting the
physical accuracy of auralised signals [8]. Some FDTD
schemes have been proposed that cause dispersion to man-
ifest nearly isotropically, spreading the error out in all di-
rections to reduce its impact within localised areas [9].
Dispersion error cannot be entirely avoided however as
domain discretisation is always required for FDTD.

3. FOURIER NEURAL OPERATOR NETWORKS
FOR ACOUSTIC SIMULATION

3.1 Background

Neural networks are capable of representing time-
intensive functions as parallelisable linear algebraic sys-
tems, which are often faster to compute than the target
function that was learned. Using deep learning techniques
to solve acoustic wave problems is therefore an attractive
prospect. If the aim is to create a general wave-modelling
solver represented as a neural network for a given domain,
numerical wave solutions produced by FDTD can be used
for training and testing data. Convolutional neural net-
work designs have been used to learn local features in
problems by passing a trainable kernel over the target do-
main [10]. This provides the network with the ability to
learn local features effectively but does not typically cap-
ture the entire domain unless the convolution kernel size
is scaled up to match the domain size.

Universal approximation theorem asserts that a multi-
layer feed-forward neural network can model any function
to an arbitrary degree of accuracy provided that the lay-
ers are populated with sufficient neurons [11]. This theo-
rem extends to the mapping of one space of functions to
another (as opposed to value-to-value mapping that char-
acterises function approximation) [12]. Mapping between
functional spaces is known as operator learning, where the
operator to be learned defines the PDE behaviour within
the domain concerned. It can be described as higher level
learning by the network than function approximation, ac-
counting for changing physical variables (such as excita-
tion position) within the system being modelled.

Fourier Neural Operator (FNO) networks [5, 6] have
demonstrated excellent prediction accuracy and conver-
gence dynamics when tasked with solving a host of for-
ward and inverse physical problems that were unseen by
the network during training [13,14]. Fourier operator lay-
ers transform incoming signals from the previous layer
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using an 3D n-point FFT, where n is the length of the
incoming signal from the preceding layer padded to the
next highest power of 2 with zeros. At this point, it is
standard practice to drop some frequency bins from the
transformed signal as a regularisation measure. Bins are
discarded from the highest frequency downwards as the
high-frequency content present in the Fourier layer spec-
tra can cause the network to overfit [5]. The spectrum is
transformed by a matrix of weights of an equivalent length
before the signal is transformed back into physical space
via IFFT. It is then transformed by a Gaussian Error Lin-
ear Unit activation function (GELU, eq. 2) and passed
to subsequent layers [15]. The efficient global convolu-
tion is performed by multiplying the signal spectra and
weight matrices in the frequency domain, equivalent to a
more computationally expensive convolution operation in
the time domain.

GELU(x) = 0.5x(1 + tanh(

√
2

π
(x+ 0.044715x3)))

(2)

3.2 FNO for acoustic wave simulation

In acoustics, FNO networks have been used to solve the
elastic wave equation for geophysical modelling, predict-
ing wave propagation emanating from an excitation source
in a free-field domain [16]. This example is also the most
similar in context and scope to the experiments presented
in this paper out of all FNO literature explored. Here,
FNO prediction accuracy degraded as the estimated sim-
ulation evolved over time. This suggests that FNO is
not suited for modelling wave propagation problems with
many time steps to be predicted. The experimental work
presented later in this paper is designed to test this hy-
pothesis. So far, there have been no implementations of
FNO solving the linear wave equation within the context
of room acoustic simulation.

FNO network architecture excels under specific con-
ditions. As FFT assumes signal periodicity, Fourier oper-
ator layers can only intrinsically handle periodic bound-
ary conditions. Non-periodic boundaries are solved by
padding the domain around its edges with zeros and in-
corporating techniques like skip connections, convolu-
tional layers or two-step U-net paths into the Fourier lay-
ers [5, 17, 18]. Nonetheless, FNO has been shown to
struggle when solving problems with complex boundary
conditions, with predicted effects from boundary interac-
tions lacking the finer detail present in the ground truth

solutions [13]. For this reason, free-field solutions are
explored in this paper. Whilst the boundary conditions
remain non-periodic, there is no superposition of waves
caused by reflections in the training data. In theory, this
results in an easier problem for the network to model, with
the aim of simulating more complex acoustic problems us-
ing FNO networks in future experiments in mind.
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Figure 2. Data flow through the acoustic FNO net-
work.

A diagram of an FNO network configured for acoustic
wave simulation is presented in figure 2. The input func-
tions used for training and inference a(x, y) are a collec-
tion of FDTD simulations excited at a coordinate (x, y),
rendered up to a given number of input time steps Tinput.
In data form, these functions can be represented as a 4-
dimensional matrix of size (s,X, Y, Tinput), where s is
the number of input simulations. Likewise, the predicted
output functions u(x, y) are the continued evolution of
the wavefield from the time step Tinput + 1 to the end
of the simulation. The output simulations are represented
as a 4D matrix of size (s,X, Y, Toutput), where Toutput is
the number of time steps to be predicted by the network
to complete the solution. An additional fully-connected
layer (known as the ”lifting” layer) is added after the input
and prior to the first Fourier layer to vectorise the inputs,
representing them as a matrix of neural network weights
and a layer of neurons. Another fully-connected layer is
added before the network output (the ”projection” layer)
which returns the signal from the Fourier layers back to
the physical domain required for the solution [5].

4. METHODOLOGY

The following tests were conducted to assess the predic-
tion accuracy and learning dynamics of FNO networks ap-
plied to 2D acoustic linear wave problems in a free-field
domain. It is often desirable to calculate many time-steps
of a solution for acoustic simulation to allow for wave
propagation and boundary interaction across as much of
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the domain as possible. This formed the motivation be-
hind the following experiments where the ratio of input
to output data provided to a FNO network during training
and prediction was increased successively. The data ra-
tio was controlled by increasing the number of predicted
time steps (Toutput) whilst keeping the number of input
time steps (Tinput) constant. Error present in predicted
transfer functions was quantified using Mean-Squared Er-
ror (MSE) in decibel scale, provided in eq. 3 where N is
the number of samples in the true and predicted data sets.

MSE =
1

N

N∑
i=1

(TrueDatai − PredictedDatai),

MSEdB = 20 log 10(|MSE|) (3)

4 FNO networks were trained to predict solutions to
the wave equation, with each modelling solutions with
more time-steps than the last. Each FNO network was
tasked with learning an operator defining wave behaviour
within the domain when excited at a random position. The
domain was square, measuring 128 samples in the x and
y dimensions. Each simulation produced was 264 time-
steps long, although each FNO network was trained on a
different number of output time-steps according to table 1.
Furthermore, each simulation was excited at a random po-
sition within the domain. To model free-field behaviour,
the domain was symmetrically zero-padded by ceil(T2 )+1
samples where T is the length of the entire time domain
in samples. Padding occurred only in the spatial dimen-
sions and solutions were un-padded after the simulation
had completed. By exciting the domain only in the central
region, waves were allowed to propagate beyond the area
of interest. Any boundary reflections and wave superposi-
tion therefore occurred within the padded area, which was
discarded to leave only the free-field propagation.

ux,y,t+1 =

1

2
(ux+1,y,t + ux−1,y,t + ux,y+1,t + ux,y−1,t)

− ux,y,t−1 (4)

A standard 4-point rectilinear stencil was used for the
FDTD computation as shown in figure 1. The FDTD up-
date equation used to produce wave simulation data is pro-
vided in eq. 4. A Dirac pulse was used as the excitation
signal. This combination of update scheme and excita-
tion signal was chosen to establish FNO learning potential

from data sourced from a simple FDTD system. Simula-
tion quality could be improved by using a different exci-
tation signal (such as a Gaussian or Ricker wavelet) or by
using an interpolated or higher-order FDTD stencil. The
effects of improving the physical accuracy of training data
on FNO optimisation can be benchmarked against the fol-
lowing results in future experiments.

Simulated wave propagation speed c was set to
343m/s. Distances between sampled points in space and
time (∆x and ∆t) measured 42.875mm and 88.388µs re-
spectively. The Courant number was c∆t

∆x = 0.707. Sys-
tem sample rate was ≈11.31kHz. The FDTD system was
physically accurate up to a limit of 1,108Hz as the stan-
dard rectilinear stencil is physically accurate only to a nor-
malised frequency limit of 0.196 [3]. Figure 3 shows an
example of training data provided to the network

x

y

8

x

y

Toutput

Figure 3. Example of training data. 8 input time
steps are shown on the left which is mapped to the
remaining Toutput time steps.

Table 1. Relation between the volumes of in-
put/output data in the tests conducted and the shape
of the FDTD domains during and after simulation.

Test
Tinput

(samples)
Toutput

(samples)
Ratio

Domain size
(x, y, t)

Padded domain
size (x, y, t)

1 8 32 1:4 (128, 128, 40) (170, 170, 40)
2 8 64 1:8 (128, 128, 72) (202, 202, 72)
3 8 128 1:16 (128, 128, 136) (266, 266, 136)
4 8 256 1:32 (128, 128, 264) (394, 394, 264)

A unique tensorised FNO (TFNO) network with skip
connections was trained for each experiment using the pa-
rameters described in table 2. TFNO architecture was
used to keep performance overheads low by factorising
the FFT computations within the Fourier layers and shar-
ing weights between them [19]. These values were based
on those used in the paper that proposed the FNO archi-
tecture [5] and then refined according to empirical results.
The small change in model parameters between tests is
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Table 2. FNO configuration.
Frequency bins preserved (64, 64)
Num. Fourier layers 4
Fourier layer width 32
Lifting channel width 256
Projection channel width 256

Model parameters

Test 1: 7,382,080
Test 2: 7,390,304
Test 3: 7,406,752
Test 4: 7,439,648

Epochs trained 750
Learning rate 0.008
Learning rate scheduler Cosine annealing (T = 30)
Optimiser ADAM (default Pytorch config)
Loss functions MSE, L2
Domain padding (x, y) (128, 128)
Average GPU memory used 5.21GB
Factorisation type Tucker (rank = 0.42)

explained by the changing number of output time steps;
the shapes of hidden layers were kept constant between
experiments.

Crucially, the signal was symmetrically zero-padded
by 128 samples in the spatial dimensions after the lifting
layer within FNO, tripling their effective width. Signals
were then un-padded back to the original spatial domain
size of (128, 128) samples before the projection layer.
This is a separate process to the zero-padding which oc-
curred during FDTD simulation to produce free-field be-
haviour. As the boundary conditions present in the 2D
free-field wave examples are non-periodic and the FFT
operation within the Fourier layers assumes periodicity,
the signal propagating through the FNO network must be
padded to solve the boundary conditions properly.

Python 3.10 with the packages Pytorch and
neural-operator were used to produce the neural
network examples [5, 20]. Training was performed via
CUDA on a Nvidia RTX 2060 Super GPU with 8Gb avail-
able working memory. 210 simulations were produced us-
ing the 2D FDTD scheme described above. 200 of these
examples were used as training data whilst the remaining
10 were used for evaluation and were unseen by the net-
work during training. A list of unique (x, y) excitation
coordinates was produced using Latin Hyper-Cube sam-
pling to mitigate clusters of points forming in localised
areas that may occur when a purely stochastic sampling
technique is used. The training data set is overall rela-
tively sparse, with 200 locations on the 128 by 128 dis-
cretised grid comprising ≈1.22% of all measurable posi-
tions. Therefore, wave propagation behaviour emanating
from ≈98.88% of possible excitation positions on the grid
are unknown to the network.

To ensure a fair comparison and reproducibility be-
tween tests, all random seeds used in Python software

packages were set to 0. Furthermore, the same set of train-
ing data was used to train each FNO network, although
only Test 4 received the full 8 input time steps and 256
output time steps during training. For other tests where
Toutput < 256, fewer time steps were fed into the network
for use as training data. At an average simulation time of
of 775ms per FDTD solution, the training and testing data
sets took a total of ≈2.71 minutes to compute.

5. RESULTS

5.1 Prediction accuracy

For the following examples, one ground-truth FDTD sim-
ulation and its corresponding FNO predictions were cho-
sen from the testing set of 10 for illustration purposes.
This example was excited at (x, y) position (83, 73) on
the grid and was unseen by the network during training.
Figure 4 illustrates evolving wave fields at different time
steps t, whilst figure 5 portrays the relative error between
true and predicted results. It can be seen that the wavefront
has been modelled accurately in all examples except Test
4, which fails to produce a physical solution whatsoever.
Much of the training data for Test 4 consisted of back-
ground noise and dispersion artifacts after the wave had
propagated past the boundaries, leading to the FNO being
trained on low-quality data compared to other examples.
For these reasons, predictions made by the FNO network
trained for Test 4 will be excluded from further analysis.
Although wavefront propagation is modelled well in Tests
1 to 3, the relative error surrounding it appears to increase
as Toutput also increases. Maximum absolute error for
Tests 1 to 3 are below several physics-informed machine
learning approaches to solving the acoustic wave equa-
tion [21, 22].

Figure 6 illustrates MSE in decibels between true and
predicted transfer functions. Relative to the excitation po-
sition (x, y), on-axis positions are measured at (x, y+10)
and off-axis positions are measured at (x + 10, y + 10).
The change in network prediction quality noted in figs. 4
and 5 is further reflected in the transfer functions obtained
from true and estimated simulations.

Transfer functions were then taken for every point on
the true and predicted grids. MSE in decibels for tests
1 to 3 were then plotted as heatmaps to indicate areas of
relatively high error. In all examples, error was most ap-
parent close to the excitation source (illustrated in figure
7). Despite FNO architecture being unable to handle non-
periodic boundary conditions implicitly, there was no in-
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dication that error manifested in greater amounts towards
domain boundaries relative to the rest of the domain. This
suggests that padding the spatial domains with zeros prior
to transforming the signal using Fourier layers within the
FNO is a suitable approach for solving problems with non-
periodic boundary conditions. Table 3 describes the error
between true and predicted transfer functions for on and
off-axis positions.

0

32

64

96

t = 8
FDTD Test 1

t = 8
FDTD Test 2

t = 8
FDTD Test 3

t = 8
FDTD Test 4

0

32

64

96

t = 16 t = 24 t = 40 t = 72

0

32

64

96

t = 24 t = 40 t = 72 t = 136

0 32 64 96

0

32

64

96

t = 32

0 32 64 96

t = 56

0 32 64 96

t = 104

0 32 64 96

t = 200

0.00 0.05 0.10 0.15 0.20 0.25
Pressure

0

32

64

96

t = 8
FNO Test 1

t = 8
FNO Test 2

t = 8
FNO Test 3

t = 8
FNO Test 4

0

32

64

96

t = 16 t = 24 t = 40 t = 72

0

32

64

96

t = 24 t = 40 t = 72 t = 136

0 32 64 96

0

32

64

96

t = 32

0 32 64 96

t = 56

0 32 64 96

t = 104

0 32 64 96

t = 200

0.00 0.05 0.10 0.15 0.20 0.25
Pressure

Figure 4. Wave propagation over time as simu-
lated by FDTD (left) and predicted by FNO networks
(right).
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Figure 6. Transfer functions obtained from on-axis
(top) and off-axis (bottom) positions relative to the
excitation position.

Table 3. MSE in decibels for on and off-axis transfer
functions pictured in figure 6.

Test
On-axis TF
MSE (dB)

Off-axis TF
MSE (dB)

1 -259.457 -232.209
2 -170.511 -174.251
3 -166.485 -167.217
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Figure 7. Heatmaps illustrating MSE for transfer
functions extracted from every measurable position
on the grid.

5.2 Training and inference time

Figure 5.2 illustrates the training losses of each FNO
network over successive training iterations. The regular
peaks in each loss curve are due to the cosine annealing
learning rate scheduler. It can be seen that the initial loss
value roughly doubles alongside Toutput. This behaviour
is also roughly mirrored in the final loss values for Tests
1 to 3. From this, it can be assumed that doubling the
amount of required prediction data approximately halves
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the effective convergence of the network on the training
examples provided. In all examples, the testing loss gra-
dients follow the training gradients closely, suggesting the
network is generalising well and not showing symptoms
of overfitting.

Test 4 appears to converge far more erratically than
the other examples before the gradient “explodes” around
epoch 550 to a value of over 14 million. It then manages
to converge to a value just above the initial loss value be-
fore repeatedly plateauing, refusing to decrease beyond a
lower threshold. The exploding gradient problem can be
attributed to numerous factors including too low of a train-
ing batch size and insufficient or poor-quality data [23]. It
can be assumed Test 4 failed to converge to a physical
solution due to some combination of these factors. The
issues with the FDTD training data produced for Test 4
are evident in the fluctuation of the loss gradient. Fur-
thermore, the ratio of input to output data was causing
convergence issues prior to the gradient explosion, sug-
gesting that a 1:32 ratio is stretching the limits of FNO
convergence under the conditions presented here.
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Figure 8. Training and testing loss descent for each
network over successive iterations. The Y limit is set
to 400 although Test 4 greatly exceeds this for several
epochs.

As shown in table 4, FNO outperforms all equiva-
lent FDTD computations by increasingly high margins.
There is little meaningful difference between FNO infer-
ence times as the number of parameters remained broadly
equal between models. On the other hand, the time taken
to produce each simulation increased as the required num-
ber of simulated time steps increased. FNO networks,
once trained, are therefore more time efficient at solving
the 2D acoustic linear wave problem than an equivalent
FDTD process under the conditions presented here.

Table 4. CPU-based FDTD computation time,
FNO network inference time and FNO training time.
FDTD computation time is only considered for
Toutput time steps. The time taken to compute the
first 8 input time steps are not included in these fig-
ures.

Test
Domain size
(x, y, t)

Padded domain
size (x, y, t)

Avg. FDTD
simulation time
(per solution)

Avg. FNO
prediction time
(per solution)

FNO training
time

1 (128, 128, 32) (162, 162, 32) 10.8ms 1.3ms 2h 25m
2 (128, 128, 64) (194, 194, 64) 62ms 1.2ms 2h 34m
3 (128, 128, 128) (258, 258, 128) 258.4ms 1.3ms 3h 13m
4 (128, 128, 256) (386, 386, 256) 704.2ms 1.4ms 4h 11m

6. CONCLUSION

It has been demonstrated that FNO networks are capable
of learning and predicting high-quality solutions to the 2D
linear acoustic wave equation. When the ratio of input
to output data was 1:16 or lower, wavefield propagation
was modelled accurately. However, the quality of the pre-
dicted results degraded as the number of output time steps
required was increased. At a data ratio of 1:32, training
the FNO network became entirely unstable. Whilst FNO
predictions were faster to obtain than all equivalent FDTD
solutions, the time taken to train the FNO network negates
the improvement in computational efficiency as it would
be faster to simulate all measurable positions on the grid
numerically.

For future research, it is suggested that FNO is trained
to model superposition of waves by introducing another
excitation source into the experiments presented here, also
placed at a random position within the domain. As super-
position is a quality that arises from reflections at wave
boundaries, it would be fruitful to assess if FNO is capable
of solving these more complex examples before expand-
ing the process to work in a room acoustics context. It
would also be beneficial to replace the simple 4-point rec-
tilinear FDTD stencil with an interpolated one to study the
effects of dispersion error and input data quality on FNO
learning dynamics [9]. It could also be beneficial to con-
tinue investigating why the FNO network failed to train at
a data ratio of 1:32.
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