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ABSTRACT

The use of Unmanned Aerial Vehicles (UAV) is steadily
increasing. Besides the resulting benefits, there are also
risks and dangers such as airspace violations or terrorist
attacks, which require the development of effective drone
defence systems. The realization of a drone defence sys-
tem implies the following stages: Detection, Identifica-
tion, Localisation and Neutralisation. In this paper, we ad-
dress the drone detection and identification (classification)
stage via acoustics using machine learning algorithms. A
major problem with this approach is the lack of publicly
available drone audio data. For this reason, we are build-
ing an extensive, open-access database consisting of both
existing drone sounds and own drone recordings. This
database contains drone sounds for all open drone classes
from C0 (< 250 g) to C4 (< 25 kg).
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1. INTRODUCTION

1.1 Background

The use of Unmanned Aerial Vehicles, frequently referred
to as drones, is continually expanding. This offers enor-
mous opportunities, but also leads to completely new dan-
gers. An event often cited in this context and crucial
for research in this area took place in December 2018 in
the immediate vicinity of London Gatwick Airport, when
more than 50 drones were spotted over a 15-hour period
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[1]. This resulted in 30 hours of flight disruption, cost-
ing £790,000. A similar event also took place at Frankfurt
Airport on 9 May 2019 [2].

In addition to these disruptions to public infrastruc-
ture, there are a variety of other adverse events associated
with UAVs, such as smuggling [3], disruption of events
[4], invasion of privacy [5], assassination and terrorist at-
tacks [6–8], and many more. To counter these growing
threats, new strategies for detection, localisation and neu-
tralisation are needed. The costs of an UAV detection sys-
tem play a decisive role here. Existing solutions are not
affordable for many users such as private individuals or
public institutions.

1.2 UAV Detection Principles

The mainly used techniques for the detection of UAVs are
RF-based techniques [9], image recognition [10], radar
[11], infrared and acoustics [12]. All these methods offer
different advantages and disadvantages, which are sum-
marised in Tab. 1. The table is mainly taken from a paper
by Park et al. [13], which gives a good overview of the
current state of UAV detection.

While radar-based solutions cover a long range and
are less sensitive to weather conditions, they are expen-
sive, cannot be used everywhere due to regulations and
are vulnerable to obstacles. RF-based methods allow for
the localisation of the operator, but they are not applica-
ble for unsupervised UAVs. Image recognition methods
can be used to develop miniaturized solutions, but they
are highly dependent on weather, which influences visi-
bility and lighting conditions, as well as on the presence
of obstacles. Acoustical sensors also offer the possibility
of miniaturized solutions and they are very cheap, but they
only offer a limited detection range. To compensate for the
disadvantages of the individual methods, a combination of
different techniques is often used [13].
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Table 1: Summary of advantages and disadvanteges
of different principles for UAV detection

Sensing
principle Advantages Disadvantages

infrared
• weather-insensitive
• long detection range • low accuracy

RF
• obstacle-free
• detect the operator

• not for unsuper-
vised UAVs

radar
• weather-insensitive
• long range

• high expense
• regulations
• vulnerable to obstacles

optic
• low expense
• miniaturized
• identification

• weather-insensitive
• vulnerable to obstacles

acoustics
• miniaturized
• cheap

• low detection range
• low accuracy

1.3 Audio based UAV Detection with Machine
Learning

This article focuses on the partial aspect of audio-based
UAV detection. Although it only works at comparatively
short distances, it does work in poor visibility conditions
or when the view is obscured. Additionally, a big mo-
tivation in focusing on acoustics is rooted in its cost-
effectiveness.

Automated detection of UAVs from acoustic data is
possible with the help of machine learning algorithms.
In [12], Dumitrescu et al. as well as Jeon et al. in [14]
present different approaches such as the Gaussian Mixture
Model (GMM), Convolutional Neural Network (CNN)
and Recurrent Neural Network (RNN) to detect commer-
cial UAVs. In [15] Li et al. focus on CNN and Shi et al.
use Hidden Markov Models (HMM) in [16].

This paper does not discuss the advantages and disad-
vantages of these different machine learning techniques.
Instead, we initially focus on the first step of each of these
techniques: the data for the learning stage.

1.4 Lack of available audio data of UAVs

A basic prerequisite for machine learning is a sufficient
amount of training data. This is precisely where currently
a major challenge lies, as it is stated by Al-Emadi et al.:
“There is a lack of publicly available data sets with acous-
tic recordings of UAVs, which are particularly important
for training neural networks for UAV recognition and clas-

sification” [17]. Similarly, Utebayeva et al. complain
in [18]: “The data preparation part also gathered UAV
sounds from open sources. This stage was laborious due
to the fact that there were not sufficient UAV sounds in
known databases.”

Resulting from these findings, the aim of this work
is to fill the gap by creating a database of UAV sounds
and making it available for public use. For that we
build up a comprehensive data base consisting of gath-
ered UAV sound and own recordings. Data for this study
were meticulously collected through a comprehensive re-
view of publicly available sources and by seeking input
from fellow researchers in the field. The UAV recordings
were obtained in two measurement campaigns in which
we recorded a total of 16 different UAVs, at least two per
category.

2. DATA BASE

2.1 Data sources

Aside from our own measurements, which represent about
85 % of all UAV sounds and approximately 70 % of
the data base, we were able to include external, differ-
ently extended data from 52 sources. These include UAV
sounds resected from 47 public domain UAV flight video
clips from youtube and sound data released by the authors
of thematically connected works on GitHub [17, 19, 20],
though many of them, unfortunalely, could not be reached
directly for some additional (sometimes indispensable)
data labeling information [17,20]. Finally, we were able to
include UAV sound data that were recorded by contacted
partners [21] and institutions [22]. Together with our own
recordings, 44 UAV types were covered so far, the data
base containes 23.42 hours of raw UAV sounds and 3.22
hours of additional technical sounds actually.

2.2 UAV classes

Since certain UAV types are permitted in some airspaces,
the UAV category is of particular importance. In 2017,
extensive rules and regulations pertaining to the opera-
tion of UAVs were implemented in Germany for the first
time [23]. Depending on the take-off weight of the UAV,
these made it mandatory for the UAV to be marked, for
the remote-controlling pilot to provide proof of knowl-
edge and/or for the state aviation authority to issue an as-
cent permit. In 2021, the legal framework was harmonised
at European level by EU Regulations (EU) 2019/945 and
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(EU) 2019/947 [24] to establish common rules and stan-
dards. Since then, a risk-based approach has been fol-
lowed, which does not differentiate between private and
commercial applications. Tab. 2 summarises the classes
defined in [24]. The classes C3 and C4 have the same op-
eration ranges. They only differ in the systems installed.
C3 requires altimeter, remote identification and geofenc-
ing, C4 does not.

Table 2: UAV classes according to [24].

Class Weight Allowed operation range
Operational Sub-
Catregory

C0 < 250 g

Areas in which it can-
not be ruled out that un-
involved persons may be
flown over.

A1 - Near per-
sons

C1 < 900 g

Areas in which it can
be assumend that no un-
involved persons will be
overflown.

A1 - Near per-
sons

C2 < 4 kg

Areas in which a mini-
mum horizontal distance
of 30 m (5 m in low-speed
modus) to uninvolved per-
sons can be maintained.

A2 - safe distance
to persons

C3\C4 < 25 kg

Areas in which no unin-
volved persons are endan-
gered and at least 150 m
away from residental ar-
eas, industrial facilities,
recreational facilities or
similar.

A3 - far away
from people

2.3 Data base structure

To tackle the labeling task depending on the classification
approach we introduce a SQL data base. All recordings in
this data base are categorized by the following classes:

(A) Single UAV free-field
(B) UAV outdoor (pure)
(C) UAV outdoor (noise, disturbances)
(D) Multiple (> 1) UAVs, free-field
(E) Multiple (> 1) UAVs, outdoor (pure)
(F) Multiple (> 1) UAVs, outdoor (noise, disturbances)
(G) Mixed (UAV sounds overlapped with noises, bab-

bles, . . . )

(H) Background (different scenes without any UAVs)

(I) Short period babble sound

Free-field recordings are achieved in a fully anechoic
chamber. Two classes (H and I) do not represent UAV
sounds. Instead, they comprise a collection of background
sounds and disturbance data, which are useful for the cre-
ation of test datasets in the context of machine learning
algorithms. If necessary, new content classes can be in-
troduced easily. Each object contains the properties File
ID, FileName, Sampling Rate, Replay-Time, Format, Di-
rectory Link, Origin, Drone Type, Uniformity Rotation,
Distance, Signal Quality, Remarks and Weight. A trun-
cated overview about the properties with corresponding
subproperties can be seen in Fig. 1.

These content classes are represented in equally struc-
tured tables where each line entry (tuple) corresponds to
a sound file of the appropriate content. Underlying binary
files are not stored in the data base itself but can be ac-
cessed by means of stored links (directory paths).

Together with the recorded UAV type and file ac-
cess information, multiple descriptive and classification
attributes are – or may be - provided in the table line en-
tries, that should enable a user to efficiently select and pick
the data files he needs (by data base queries). This addi-
tional, file-related information, which represents the value
of the data base consists of technical, file-, UAV-, source-
and processing-related marks and pre-classifications.

Such pre-classifications usually result from the
recording procedure and situation. So, operators may pre-
classify sounds into flight phases with increasing (take-
off, rising) or constant rotation speed or by the distance
between microphones and UAVs.

The file related lines also contain technical informa-
tion about the sound file itself (sampling rate, number of
channel files, file format, replay time and signal quality)
and indices pointing to tuples in other provided tables (see
below). Additional non-formalised information or short
remarks can be added in a designated field.

Finally, further file related, descriptive table entries
are forseen to support classification procedures. For that
aim, predefined sound data descriptors (own recordings,
downloaded external, segmented or continuous etc.) or
processing-status information (raw, filtered, resampled,
used for teaching etc.), can be added and be used as search
criteria in SQL queries.

The data base contains two other important tables
which contain further descriptive information, that is not
file-related but can be fetched using mandatory index en-
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Figure 1: Structure of the database.

tries in the file tuples, one for the UAV types covered in the
data bank and another for elaboration of the data sources.

The table tb dronetype provides technical descriptive
information about the UAVs (from product specification
or description: UAV type, sub-type, number of rotors and
cantilevers, UAV weight with and without payload), name
of UAV manufacturers and optionally a picture link. It
also contains the European UAV class that corresponds to
the given weight values.

Further, the table tb data origins provides names of
owners respectively authors of related reports or research
works, related internet links, licensing status information
and additional remarks on authorship and publications.

2.4 Data base access

The complete dataset for our database has been made pub-
licly accessible via the Mobilitheksplattform of the Fed-
eral Ministry of Digital Affairs and Transport, Germany,
and can be accessed through the link in the footnote 1 .
However, it’s important to note that the database is not
hosted online. To utilize the data, users must download
and host the database locally. Detailed instructions on
how to set up and use the database can be found at the
provided link.

1 https://mobilithek.info/offers/

605778370199691264

3. DATA BASE CONTENT

3.1 Overview

The goal of our work is to create a comprehensive, pub-
licly accessible database of UAV sounds, which can be
used as a training basis for own classifiers. The database
was compiled through meticulous exploration of existing
literature, outreach to other scholars in the field, and care-
ful extraction of audio from YouTube, complemented by
our own original UAV recordings. The yotube data were
recorded with Audacity during their playback and then
post-processed by normalizing the volume and removing
of non-UAV sounds. Both, the collection and the own
recordings, led to a total of 4924 UAV sound files with
a total playback duration of 23.42 hours. By now we have
samples of 44 different UAV models, 9 for class 0, 11 for
class 1, 12 for class 2 and 13 for class 3/4.

The own recordings were carried out during two mea-
surement compaigns, the first one in an anechoic cham-
ber and the second one outdoor. During both compaigns
the sound of a total of 16 different UAV models were col-
lected, with at least two UAVs per class. An overview
about all used UAVs can be found in Tab. 3.

3.1.1 Anechoic chamber

The first compaign took place in the anechoic chamber
of the Institute of Acoustics and Speech Communication
of the Technical University Dresden (Fig. 2). This room
has a volume of 1000 m3 what is big enough to let huge
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Table 3: Summary of measured UAVs; In\Out in-
dicates, if the corresponding UAVs have been mea-
sured indoor and\or outdoor.

UAV model weight Category In Out

Cartronic 15 g C0 X -
Potensic Firefly A20 25 g C0 X -
Emotion 93 g C0 X -
DJI Mavic Mini 3 Pro 247 g C0 X -
DJI Avatar 417 g C1 X -
DJI Mavic Air 2 566 g C1 X -
DJI Mavic Pro 673 g C1 X -
DJI Mavic 2 Pro 821 g C1 X -
DJI Mavic 3e 914 g C2 X X
Phantom 4 1,37 kg C2 X -
DJI Phantom 4 RTK 1,43 kg C2 X X
DJI Inspire 2 3,41 kg C2 X X
DJI Matrice 30 T 3,80 kg C2 - X
HP-X4 2020 5,49 kg C3\C4 X X
DJI M300 8,00 kg C3\C4 X X
HP-E616P-1 25,10 kg C3\C4 - X

UAVs fly. Measurements in an anechoic chamber are not
influenced by acoustic influences from the environment
such as noise or reflections. Reflections, especially from
the ground, cause the UAV sound to overlap with itself
in a short time interval, which can lead to serious devia-
tions from the original signal. This type of interference is
known in an acoustic context as the comb filter effect. The
pure UAV sound recordings are, therefore, very valuable
as a basis for data augmentation. Thus, by convolving
the recordings with appropriate room impulse responses
as well as mixing them with ambient noise, they can be
used to create any real-world scenarios.

The measurements were conducted using five micro-
phones, each distinct in its specifications:

1. WA101 PU Sound Intensity Probe by weles acous-
tics

2. AKG C451B

3. AKG C451B

4. Behringer ECM8000

5. BSWA MP253 microphone capsule with MA231
pre-amplifier

The WA101 PU Sound Intensity Probe was employed
to record both sound pressure and velocity, despite the fact
that sound velocity does not play a significant role in the
detection and classification of UAVs. Both the first and

Figure 2: Measurements in anechoic chamber -©by
Fraunhofer IVI

fifth microphones are ICP measuring microphones, while
the others are generally utilized in music production.

Taking into account the importance of cost-
effectiveness in future experiments, our primary aim was
to use these audio microphones as the main recording
instruments. To ensure accuracy, microphones 1 and
2, as well as 4 and 5, were carefully arranged in close
proximity to one another. This setup was designed to
observe any potential differences or inconsistencies in
signal quality between the different types of microphones.
As part of the systematic setup, all the microphones were
securely mounted on tripods at an approximate height of
1.5 meters to maintain a uniform recording environment.

Fig. 3 illustrates the frequency responses of the
BSWA and Behringer microphones, presented in 1/6 oc-
tave steps for a randomly selected UAV measurement. As
per the specifications in their respective data sheets, both
these microphones are known to exhibit a nearly flat fre-
quency response. This visualization effectively demon-
strates that the frequency responses of these two micro-
phones align substantially, further strengthening their re-
liability in such experiments. The figure clearly illustrates
that the frequency responses of the two microphones are
substantially similar.

We followed a consistent procedure for all UAV mea-
surements, as illustrated in Fig. 4. The UAVs initiated
their flight from a designated launch platform and then
hovered for a minimum of 5 seconds near microphones
1 and 2. Following this, they traversed the room at an
average altitude of 3 meters, passing by microphone 3.
Once on the opposite side of the room, the UAVs hov-
ered for another 5 seconds near microphones 4 and 5. The
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Figure 3: Comparison of the frequency response of
Behringer and BSWA microphone

return flight mirrored the initial route, with the UAVs fly-
ing back past microphone 3 and pausing once more near
microphones 1 and 2 for 5 seconds before finally landing
back on the platform.

Figure 4: Schematic representation of the measure-
ment process with take-off (1), hovering (2), flying in
one direction (3), hovering in the oposite side of the
room (4), flying back (5) and landing (6)

The two hovering locations were approximately 20
meters apart. Each traversal of this distance was con-
ducted at a slow pace for the initial measurement cycle
and at a faster speed for the subsequent round. The mea-
surements incorporated two distinct flight speed scenarios.
Although the exact speed wasn’t quantified, it was broadly
estimated that the UAVs flew at around 1-2 m/s during the
slow flight scenario and 4-5 m/s during the faster flight
scenario.

Each measurement was conducted at least twice to en-
sure data reliability. When conditions permitted, we con-
ducted additional measurement cycles, sometimes with
extra payloads. In one instance, the UAV propellers were
alternated and the entire measurement cycle (slow, fast,
without payload, with payload) was repeated.

For a more in-depth understanding, a video of these

measurements is available on the website of our project
partner, the Fraunhofer Institute for Transportation and In-
frastructure 2 .

3.1.2 Outdoor

We carried out a second measurement campaign outdoors,
with the intent to curate a dataset featuring the same
UAVs but under varying environmental conditions. Such a
dataset, though susceptible to the unpredictable elements
of outdoor conditions, would prove beneficial for testing
data robustness. These measurements were conducted at
the test field of the Fraunhofer Institute for Transportation
and Infrastructure Systems in Dresden.

Instead of conducting measurements with individual
microphones as in our previous campaign, we carried out
the current campaign using three microphone arrays, each
comprising 24 microphones. Our measurement setup is
illustrated in Figure 5, which displays both a photograph
of the measurement situation with the arrays (composed of
Behringer microphones) and a satellite view marking the
positions of these arrays. The red circles indicate array
locations, while the blue rectangle depicts the location of
the pavilion that served as the base station.. An orange
line outlining the approximate flight path of the UAVs is
also included for reference.

Since our outdoor measurements incorporated a de-
gree of redundancy, the database only includes sum sig-
nals of all microphones per array. This not only stream-
lined data reduction but also ensured enhanced signal
quality due to the increased signal-to-noise ratio.

The microphone arrays employed in this experiment
have a circular structure with a diameter of 34 cm. As a
future plan, we aim to utilize the recorded data for track-
ing UAV trajectories by implementing simple direction-
of-arrival beamformers. This aligns with our overarching
goal of a comprehensive UAV detection and localization
system.

4. CONCLUSION AND FUTURE WORK

Our examination of existing literature on audio-based
UAV detection using machine learning algorithms has un-
derscored a pronounced lack of suitable training data. To
fill this gap, we have compiled a database, rich in diversity,

2 https://www.ivi.fraunhofer.de/de/

forschungsfelder/fahrzeug-und-antriebstechnik/

fahrzeug-und-verkehrssicherheit/

luftverkehrssicherheit.html
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Figure 5: Upper image: An on-site photograph from
the measurement campaign, featuring one of the used
arrays in the foreground. Lower image: Google
Maps view of the measurement location. The red cir-
cles indicate array positions, the orange line repre-
sents the approximate UAV flight path, and the blue
rectangle outlines the location of the pavilion.

comprised of UAV sounds. It features recordings from 16
distinct UAV models, ensuring at least two models from
each UAV class are represented.

The data compilation involved conducting two dis-
tinct measurement campaigns: an initial campaign within
an anechoic chamber and a subsequent outdoor campaign.
Further, we enriched the dataset with UAV recordings ex-
tracted from a range of sources, including digital plat-
forms like YouTube, and valuable inputs from fellow re-
searchers.

Collectively, our carefully curated database aggre-
gates 23.42 hours of UAV recordings, covering 44 diverse
UAV models, and serves as a robust resource for future
machine learning algorithm training in UAV detection.

Developing a high-performing classifier necessitates
the availability of ”good” data. This principle is echoed in
a statement by Alexander Pretschner, Professor for Soft-

ware and Systems Engineering at the Technical University
of Munich, who asserts, “as long as a machine learning
algorithm has enough examples of inputs, it finds the out-
puts. If the data are all clean, that’s useful, but they usually
aren’t” [25]. Armed with this insight, our subsequent step
is to leverage the ”good” data, primarily from the anechoic
chamber measurements, and generalize them through suit-
able augmentation techniques such as pitching, modula-
tion, and the addition of ambient noise or white noise.

The quality of this generalization can then be vali-
dated against the remaining data in the database, espe-
cially our own outdoor measurements. This verification
process helps us establish the robustness of the classifier
in varied real-world conditions.

Finally, as another aspect of our work but not cen-
tral in this context, we intend to utilize our outdoor mea-
surements to determine UAV trajectories using acoustic
cameras. This initiative forms part of our ongoing efforts
towards establishing a comprehensive UAV detection and
localization system.
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