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ABSTRACT
The acoustic modeling of wave propagation in musical in-
struments, based on linear models, is very common in the
world of sound synthesis. The particular case of brass
instruments implies the addition of a nonlinear term in-
volved in the ”brassiness” color of the sound. A frequency
resolution algorithm called Harmonic Balance Method
(HBM), was initially described by Gilbert & al (2000) to
take into account this term. Beside this method, the res-
olution requires time domain methods such as Finite Dif-
ference Time Domain schemes (FDTD). The present topic
focuses on the study of some of these time domain meth-
ods applied to brass instrument, and how they can be im-
plemented in industrial piping systems with many other
elements disturbing the acoustic field: orifices, cross-
section changes, bifurcations, and lumped elements such
as volumes or Helmholtz resonators. Modeling these com-
bined effects is the motivation for this work.

Keywords: nonlinear acoustics, waveguides, FDTD
modeling, sound synthesis

1. INTRODUCTION

In energy industries, the propagation of gas using recip-
rocating compressors can occasionally affect the safety of
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the piping system due to excessive vibratory stresses. The
normal operation of these compressors induces wave pul-
sations in the piping system, causing vibrations induced
by fluid-structure coupling. To reduce the level of these
pulsations, elements such as expansion chambers, orifices,
or volumes acting as added mass are integrated into the
piping system. However, the position of these elements re-
quires specific positioning and design to ensure construc-
tive tuning of the damping over the operating frequency
band of the reciprocating compressor (usually 0-300 Hz).
Historically, this tuning was based on the electro-acoustic
analogy from the telegrapher’s equations whose linear res-
olution allowed, by transfer matrix, to estimate the acous-
tic response of the system along the piping line. But the
emergence of increasingly powerful compressors operat-
ing at faster speeds (0-600 Hz) has led to the generation of
important non-linear effects. These effects appear either
during propagation, or in a localized manner at singulari-
ties such as orifices or section changes.

In the field of nonlinear resolution, numerical meth-
ods are often necessary to simulate wave propagation. To
reduce the calculation times for industrial applications,
the one-dimensional resolution has been preserved (i.e.,
this assumption is acceptable because the system cut-off
frequency is generally above the maximum operating fre-
quency of the compressor).

The first part deals with the time domain resolution
of the weakly nonlinear propagation of waves in waveg-
uides using differents method like FDTD (Finite Differ-
ence Time Domain) schemes. The second part deals with
the nonlinear effects induced by the orifices, at the ori-
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gin of strong nonlinear and damping effects in the system.
The third part concerns the validation of the hybrid model
arising from these two parts and his application on an in-
dustrial case.

2. MODELING OF NONLINEAR PROPAGATION

The hypothesis of weakly nonlinear propagation (u′ ≪
c0, where u′ is the acoustic velocity and c0 the celer-
ity), allows to obtain the non-dissipative Burgers equation,
whose literature is full of resolution methods [1–3]. A
well-known quasi-analytical model is achhieved using the
Burgers-Hayes method [4, 5], allowing resolution for any
form of solution (see Fig.1).
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Figure 1. Solution of the propagation of a wave
packet, beyond the shock formation. In black, the
multivalued Poisson solution of and in red, the the
physically admissible solution from the of Burgers-
Hayes method.

The interest of this model lies in the possibility of
evaluating the harmonic evolution of a signal during its
propagation, beyond the shock formation. The resolu-
tion of the Burgers equation is more interesting from a
physical point of view because it introduces a dissipative
term [6]. Some analytic solutions still exist in special
cases [7–9], but numerical resolution becomes essential
for a generalized solution [10,11]. For example, Lombard
& Mercier [12] have proposed an explicit 2nd order TVD
scheme with limiters applied on the flux function, to en-
sure stability beyond shock formation.

Burgers equation simulate the weakly nonlinear prop-
agation of waves including a bulk losses term (interac-
tion between particles: viscosity, thermal conductivity and
molecular relaxation). But the guided wave propagation
implies additional friction of the particles against the walls
of the waveguide [13, 14]. This term is called viscother-
mal losses and lead to the generalized Burgers equation

:
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where the term T
ϵ corresponds to the ratio between non-

linear effects and boundary layer dissipation effects, with
:

T =
α

k0
, (2)

where k0 = ω/c0 and α is the wall attenuation coef-
ficient.There is no analytical solution to this equation.
Menguy & Gilbert [15] proposed a numerical resolu-
tion method in the frequency domain called the Har-
monic Balance Method (HBM). Lombard & Mercier pro-
posed a time domain numerical scheme using a fractional
step called Strang Splitting [16]. This scheme seper-
ates the equation into a propagative part (Burgers equa-
tion), whose resolution is carried out by TVD scheme al-
ready mentioned, and a relaxation part (diffusion equa-
tion), dealing with the fractional derivative term associ-
ated with viscothermal losses at the wall. The latter is
solved by the Yuan-Agrawal method [17], transforming
a fractional differential equation into an ordinary differen-
tial equation. Figure 2 illustrates the effect of adding these
loss terms, in the evolution of a wave packet beyond shock
formation, in a 50 mm diameter pipe.
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Figure 2. Solution of the propagation of a wave
packet, beyond the shock formation. In black the
lossless Burgers solution obtained from the Burgers-
Hayes method, in red, the generalized Burgers so-
lution obtain from the FDTD scheme proposed by
Lombard & Mercier.

This equation is valid for a progressive wave. How-
ever, the modeling of wave propagation in a piping system
implies a non-zero stationarity rate. In the case where the
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reflection rate of a termination is independent of the in-
cident wave, Harisson & Bilbao showed numerically that
in the weakly nonlinear case, the decoupling of the inci-
dent and reflected waves is reasonnable [18]. But in the
case of high pulsating levels, the response of an orifice is
nonlinear, meaning that its impact depends on the incident
waves on both sides. In other words, the reflected waves
thus become dependent on the incident waves. A direct
resolution of the 1D Navier-Stokes equations is necessary
to combine nonlinear wave propagation with the nonlinear
behavior of orifices. Gascon & Corberan [19] proposed a
2nd order TVD scheme to solve these 1D Navier-Stokes
equations in a proper way.

3. LOCALIZED NON-LINEARITIES THROUGH
AN ORIFICE

From the assumption of an incompressible and one-
dimensional fluid, it is possible to obtain the unsteady for-
mulation of Bernoulli’s equation, using the motion conser-
vation equation. Using also the mass conservation equa-
tion, Cummings [20] proposed a simple equation connect-
ing the acoustic velocity to the pressure difference on both
sides:
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with ζ the section ratio, Υ the vena contracta coefficient,
V0(o) the steady flow, and l a length associated with the
added mass effect provided by the volume of fluid con-
tained through the orifice. This equation can be solved
numerically using the 4th order Runge Kutta’s theorem.
By considering the orifice as a point element of the FDTD
scheme, it is possible to combine the nonlinear propaga-
tion model with this localized model, in order to obtain a
hybrid model adapted to industrial issues [21].

4. RESULTS

The validation of this hybrid model involves comparison
with experimental data. Cummings performed measure-
ments on very narrow orifices, maximizing localized non-
linear effects [22] [20]. Two measurements, made on an
orifice leading to an anechoic termination, were of partic-
ular interest for the authors: the output signal of a high

level impulse wave without steady flow; thto demonstrate
its usefulness in non-linear modellinge output signal of a
high level periodic wave with steady flow.

Figure 3 illustrates the results obtained experimen-
tally by Cummings and those obtained numerically by the
hybrid model. It appears that without flow the model is
very accurate, and slight deviations appear with added
steady flow. However, given the narrowness of the ori-
fices (approximately 1/9 of the diameter of the tube), and
the technical complexity that such a measurement repre-
sents, these results are very satisfactory.
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Figure 3. Left column, incident signal to the left of
the orifice, right column, transmitted signal to the
right of the orifice. The first and second line cor-
respond respectively to the impulse source without
flow and to a periodic source with flow (V0 = 50
m.s−1). The black lines correspond to the values
measured by Cummings, the red lines correspond to
the results of the hybrid FDTD model.

A second analysis consists of modeling a pipe with
two expansion chambers, between which an orifice is po-
sitioned (fig.4). The presence of the chambers generates
the formation of stationary waves around the orifice. Note
that the higher the speed through an orifice, the more it
impacts the surrounding pressure field. Thus, the impact
of an orifice will be maximum on a pressure node and
minimum on a pressure anti-node.

In the present case, a very high level signal is gen-
erated at the pipeline input. Without orifice, this sig-
nal is distorted during its propagation and diffused in
the pipeline due to the presence of the chambers. Thus
the monochromatic input signal is transformed into a
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Figure 4. Geometry of the pipe including the two
expansion chambers and the orifice (eo = 10 mm and
Ro = 150 mm) located in a waveguide (x = 3 m and
R = 250 mm).

harmonic output signal, whose timbre is shaped by the
pipeline configuration. When an orifice is added to a pres-
sure anti-node (see Fig.4(a)), the signal is not impacted by
the orifice. The orifice is acoustically transparent. When
the orifice is moved over a pressure node (see Fig.4(b)), its
impact becomes very significant and plays a role of damp-
ing over the entire width of the spectrum.
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Figure 5. Pressure spectrum at the pipe outlet. (a)
orifice positioned on a pressure node, (b) orifice po-
sitioned on a pressure node. the black and red lines
correspond respectively to the pipe without and with
orifice.

4.1 Conclusion

This document describes in successive bricks, some mod-
els allowing to simulate the nonlinear propagation of
acoustic waves. These models provide a bridge between
industrial piping system issues and wind instrument sound
synthesis. A hybrid model is also presented to incorpo-
rate orifices in piping system simulations. This model
is validated experimentally and tested on an industrial
case study to demonstrate its usefulness in nonlinear mod-
elling.

5. ACKNOWLEDGMENTS

The authors would like to thank Joël Gilbert for his valu-
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