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ABSTRACT
Statistical distributions for the amplitude, intensity, and
phase of randomly scattered sound are important in a va-
riety of problems involving noise characterization, detec-
tion, communication, beamforming, and remote sensing.
This paper discusses some recent progress in modeling
the distributions of scattered sound and the situations to
which they apply. In particular, several extensions to the
gamma distribution are described: the compound gamma
for signals that have been scattered with randomly vary-
ing strength, the variance gamma for the complex prod-
ucts (covariances and cross spectra) between pairs of sen-
sors, and the compound variance gamma for signals at
pairs of sensors with varying scattering strength. Further-
more, a new joint amplitude-phase distribution, termed the
phase-modulated Rice, is described, which is appropriate
for signals that are scattered by inhomogeneities spanning
a broad range of spatial scales as occurs in atmospheric
turbulence. This distribution employs the basic (unmod-
ulated) Rice distribution for scattering by relatively small
(Fresnel-zone scale) turbulent eddies, while the phase is
modulated with a von Mises distribution to represent the
impact of relatively strong large-scale turbulence.

Keywords: scattering, turbulence, phase modulation,
variance gamma distribution, Rice distribution

1. INTRODUCTION

Randomization of the amplitude, intensity, and phase of
acoustic signals by the environment is important in a va-
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riety of problems involving noise characterization, detec-
tion, communication, beamforming, and remote sensing.
The randomization results from scattering and multipath
effects caused by turbulence in the atmosphere and ocean,
ground and ocean bottom roughness, buildings in an urban
environment, trees in a forest, and ocean surface waves.
An example of these effects in an urban-like scenario
is provided in Figure 1, which shows a finite-diffrence
time-domain (FDTD) calculation involving interactions of
sound waves with buildings. Similarly, scattering of sound
by atmospheric turbulence is illustrated in Figure 2, which
shows a parabolic equation (PE) calculation involving up-
wind propagation over the ground. (Details on the FDTD
method used to calculate Figure 1 can be found in Chapter
12 of Ostashev and Wilson [1]; details on the PE method
used for Figure 2 are in Chapter 11.)

Many statistical models have been used to describe
randomly scattered signals, including the gamma and
Nakagami distributions for fully saturated (zero-mean)
signals [2–5], the Rice distribution for weakly scattererd
(non-zero mean) signals [3,6], and the K-distribution [7,8]
for signals subject to random variability in the scattering
strength.

This paper reviews some recent progress in modeling
of distributions for scattered sound and other applications
involving randomized signals. In Sec. 2, distributions for
signals at a single sensor are discussed, first in the limit
of full saturation (complete randomization), for which the
basic gamma distribution is applies, and then incomplete
saturation, for which the noncentral form of the gamma
distribution is needed. Then, in Sec. 3, distributions for
the complex products (covariances and cross spectra) be-
tween pairs of sensors are discussed. In particular, the
variance gamma distribution is introduced for modeling
of the complex product in full saturation conditions.

Lastly, in Sec. 4, the concept of modulation is dis-
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Figure 1. Two-dimensional, finite-diffrence time-
domain simulation of sound propagation at 100 Hz,
with 16 randomly placed “buildings” (solid squares
10 m on a side) within a 200 m by 200 m domain.
Red is positive pressure; green is negative. A ring of
120 receivers (the x’s) is placed at a fixed radius of
80 m from the source.

cussed. The basic idea is to treat the parameters of a base-
line distribution for the scattered signal as random vari-
ables, in order to account for variations in the properties
of the environment. Amplitude modulation can be useful
for modeling the intermittency of turbulence; i.e., the vari-
ability of turbulence strength in space and time. It could
also be useful for modeling the impact of varations in size
and density of buildings in an urban landscape. This leads
to the compound gamma for signals at a single sensor, and
the compound variance gamma for signals at pairs of sen-
sors. Phase modulation can be useful for signals that are
scattered by inhomogeneities spanning a broad range of
spatial scales. By introducing phase modulation into the
Rice model, the relatively large phase variance of signals
scattered by large-scale turbulence can be captured.

2. SINGLE RECEIVER DISTRIBUTIONS

The framework described in this paper applies to situ-
ations in which a complex-valued harmonic signal (the
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Figure 2. Parabolic equation calculation for upwind
propagation in moderately windy, turbulent condi-
tions (friction velocity of u∗ = 0.3 m/s). The source
height is 1.5 m and the frequency is 400 Hz.

complex envelope or phasor of a narrowband filtered sig-
nal) Z has independent, normally distributed real (X) and
imaginary (Y ) parts with equal variance. Indicating a nor-
mal distribution with mean ν and variance σ2 as N (ν, σ2),
we have X ∼ N (νx, σ

2) and Y ∼ N (νy, σ
2). The power

(or intensity) is proportional to |Z|2 = ZZ∗ = X2 + Y 2,
where the asterisk indicates the complex conjugate. The
incoherent sum of k independent samples of the power is
ζ =

∑k
j=1 ZjZ

∗
j =

∑k
j=1(X

2
j +Y

2
j ), where j is an index

indicating the sample.
The primary objective of this paper is to review distri-

butions for ζ for various scenarios. Although details of the
derivations are not provided due to space limiitations, the
starting point is generally the following joint probability
density function (pdf) for X and Y :

fXY (x, y|ν, ψ, σ2) =

1

2πσ2
exp

(
− (x− νx)

2 + (y − νy)
2

2σ2

)
. (1)

Here, ψ = atan2(νy, νx). We follow the convention of
indicating random variables in upper case and functional
values related to those variables in lower case. The ar-
guments of the pdf to the left of the vertical line are the
values of the random variables; the arguments to the right
are the parameters upon which they depend. For k inde-
pendent samples, the joint pdf would be a product of pdfs
in the form of Eq. (1).
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2.1 Fully saturated scattering (gamma or Nakagami)

Full saturation corresponds to setting νx = νy = 0. In this
case, ζ is simply the sum of the squares of 2k independent,
normally distributed random variables with zero mean and
variance σ2. It is well known in the statistics literature that
such a sum has a gamma distribution with shape factor k
and scale parameter θ = 2σ2 [4]. The pdf for the gamma
distribution is

fΓ(ζ|k, θ) =
1

Γ(k)θk
ζk−1e−ζ/θ (2)

where Γ(k) is the gamma function. When k = 1, the
gamma distribution reduces to the exponential. The ex-
ponential and gamma distributions are familiar in the lit-
erature on wave scattering and random noise [3, 5], al-
though they are commonly transformed from signal power
to amplitude (which is proportional to

√
ζ), thereby yield-

ing the Rayleigh and Nakagami distributions [2], respec-
tively. The mean of the gamma distribution is kθ = 2kσ2,
whereas the variance is kθ2 = 4kσ4. The scintillation
index, which is often used to describe scatterred signal
behavior, is defined as S2

I = ⟨ζ2⟩/⟨ζ⟩2 − 1 = ⟨(ζ −
⟨ζ⟩)2⟩/⟨ζ⟩2. Hence, S2

I equals the variance normalized by
the squared mean; for the gamma distributon, S2

I = 1/k.
Strictly speaking, Eq. (2) is called an order d = 2k Er-

lang distribution, where d is the degrees of freedom. From
a mathematical perspective, however, there is no reason
why k cannot be a positive non-integer value, and there
may be situations where this is useful. In particular, for
unsaturated signals, k is sometimes set to a value greater
than one, which can provide a reasonable model for weak
scattering cases such that S2

I less than one [9]. But, there
is a more formal approach to modeling unsaturated signals
as described in the following subsection.

2.2 Unsaturated scattering (noncentral gamma or
Rice)

From Eq. (1), we find the joint pdf for the amplitude
A =

√
X2 + Y 2 and the phase Φ = arctan(Y/X) by

setting fAΦ(a, ϕ) = [|Ja,ϕ(x, y)|fXY (x, y)]a,ϕ, where
Ja,ϕ(x, y) = a is the Jacobian. The result is

fAΦ(a, ϕ|ν, ψ, σ2) =
a

2πσ2
exp

(
2aν̃ − a2 − ν2

2σ2

)
,

(3)
where ν2 = ν2x + ν2y and ν̃ = νx cosϕ + νy sinϕ =
ν(cosψ cosϕ+ sinψ sinϕ) = ν cos(ϕ− ψ).

We call this formulation with non-zero νx and νy the
Rice model. The amplitude distribution, or Rice distribu-
tion, is obtained by marginalizing (integrating) the joint
pdf, Eq. (3), over the phase, with result

fA(a|ν, σ2) =
a

σ2
exp

(
−a

2 + ν2

2σ2

)
I0

(aν
σ2

)
. (4)

Here, Id is the modified Bessel function of the first
kind, order d. The power (amplitude squared) distribu-
tion for the Rice model is obtained by setting f(ζ) =
[|da/dζ|fA(a)]ζ , with ζ = a2, leading to the order 2
noncentral Erlang distribution. Extension to the sum of
k independent samples of the power yields the order 2k
noncentral Erlang distribution [5]:

fNΓ(ζ|k, ν, σ2) =
1

2σ2
exp

(
−ζ + ν2

2σ2

)
×
(
ζ

ν2

)(k−1)/2

Ik−1

(
ν
√
ζ

σ2

)
. (5)

The mean of this distribution is 2kσ2 + ν2 and the vari-
ance is 4σ2(kσ2 + ν2). The scintillation index S2

I =
(k + ν2/σ2)/(k + ν2/2σ2)2. Defining the Rice factor
as R = ν2/2σ2 (which represents the ratio of the pow-
ers in the steady and varying parts of the signal), the
mean is 2σ2(R + k), the variance is 4σ4(2R + k), and
S2
I = (2R + k)/(R + k)2. As discussed in connection

with fully saturated signals, mathematically k can be set
to a non-integer value. With this in mind, we call Eq. (5)
the noncentral gamma distribution. It reduces to the or-
dinary (central) gamma distribution in the limit ν → 0.
From a physical perspective, however, there does not ap-
pear to be a motivation for setting k to a non-integer value,
since unsaturated scattering can be modeled using R > 0.

Figure 3 plots the noncentral gamma distribution for
various values of R and k. The parameter 2σ2 is set to
1/(R+ k) and ν2 to R/(R+ k), thus yielding a mean of
one. Increasing R and k both result in a distribution that
is more peaked around the mean.

The phase distribution for the Rice model follows by
marginalzing Eq. (3) over amplitude, which results in [10]

fΦ(ϕ|R,ψ) =
1

2π
e−R

[
1 +

√
Rπ cos(ϕ− ψ)

× exp
(
R cos2(ϕ− ψ)

)
erfc

(
−
√
R cos(ϕ− ψ)

)]
. (6)

2.3 Variable source-receiver separation

The discussion of signal distributions has so far focused
on random variations driven by the spatial or temporal
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Figure 3. Noncentral gamma distributions for vari-
ous values of the Rice factor R and number of inco-
herent samples k. Different values of R are shown
as different colors. Increasing R corresponds to a
stronger deterministic component to the signal. Solid
lines are for k = 1 and dashed lines were k = 4.

structure of the propagation medium. But variations can
also occur due to changes in the number of sources and
in the propagation geometry between the source and re-
ceiver. This occurs, for example, when a microphone is
situated at a roadside with passing vehicle traffic. Wilson
et al. [5] examined a model where the receiver is fixed
at the middle of a circle, and multiple sources are ran-
domly distributed within the circle. The distribution of
the sound level (logarithm of the power) was shown to be
well fit by an exponentially modfied Gaussian (EMG) dis-
tribution [11], which represents the sum of two random
variables, one exponentially distributed and the other nor-
mally distributed. The exponential part is associated with
the single source that is closest to the receiver, whereas the
normal part is associated with the remaining, more distant
sources. This result helps to explain why sound levels in
urban environments often appear to be approximately nor-
mally distributed, but with an exponential tail to the right
of the peak (i.e., positive skewness).

3. MULTIPLE RECEIVER DISTRIBUTIONS

This section considers extensions of the Erlang (gamma)
distribution to two or more receivers, for fully saturated
signals. Results are not presently known for unsaturated

signals.

3.1 Variance gamma

We next consider the product ζ =
∑k
j=1 Zj(Z

′
j)

∗ where
Zj andZ ′

j represent samples at two different points, which
may be separated in space and time. This complex product
represents, for example, a complex covariance or a cross
spectral density estimate between a pair of receivers.

Suppose the two signals are fully saturated but with
differing variances, i.e. ⟨X2⟩ = ⟨Y 2⟩ = σ2 and
⟨(X ′)2⟩ = ⟨(Y ′)2⟩ = (σ′)2. The correlation coefficient ρ
is defined such that ρ = ⟨XX ′⟩/(σσ′) = ⟨Y Y ′⟩/(σσ′).
Since the phase is uniformly distributed in full saturation,
the cross products ⟨XY ⟩ and ⟨X ′Y ′⟩ must be zero. Based
on these assumptions, Wilson et al. [12] showed that the
real and imaginary parts of the two-point product, ζr =∑k
j=1(XjX

′
j + YjY

′
j ) and ζi =

∑k
j=1(YjX

′
j − XjY

′
j ),

respectively, are both described by variance gamma (VΓ)
distributions. Namely, ζr ∼ VΓ (k, ρ, 2σσ′) and ζi ∼
VΓ
(
k, 0, 2σσ′

√
1− ρ2

)
, where

fVΓ(ζ|k, ρ, θ) =
2√
πΓ(k)

|ζ|k− 1
2√

1− ρ2θk+
1
2

e
2ρζ

θ(1−ρ2)

×Kk− 1
2

(
2|ζ|

θ(1− ρ2)

)
, (7)

in whichKν(x) is the modified Bessel function of the sec-
ond kind, order ν. The mean of the VΓ distribution is kρθ
and the variance is k(1 + ρ2)θ2/2. Using the asymptotic
expansion for the modified Bessel function, it can be read-
ily shown that the VΓ distribution for the real part reduces
to the gamma in the limit ρ → 1, whereas the imaginary
part vanishes in this limit. Figure 4 plots the VΓ distribu-
tion for various values of ρ, with θ and k both set to one.
The solid lines are for the real part, dashed lines are for
the imaginary part.

3.2 Complex Wishart and matrix gamma

Next consider the case of N receivers. Let Znj = Xnj +
iYnj , where Znj is the jth sample of the complex signal at
receiver n. Furthermore, define vectors of the signals for
the sample j as Zk = [Z1j , Z2j , . . . , ZNj ], and similarly
for Xj and Yj . We then define

S =

k∑
j=1

ZjZ̃j . (8)
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Figure 4. Variance gamma distributions for various
values of the correlation coefficient ρ with k = θ =
1. Solid lines are for the real part and dashed liines
are for the imaginary part.

The matrix S, which is N ×N , generalizes the variable ζ
to the multivariate case. In the literature, S is often termed
the scatter matrix, although the usage of the term scatter
in this context differs from its usage in wave scattering.

When Xk and Yk are given by multivariate normal
distributions, S has a complex Wishart distribution, as first
derived by Goodman [13]. Maiwald and Kraus [14] pro-
vide an accessible introduction from the perspective of
signal processing. The complex Wishart distribution has
the following form:

fCW(S|k,V) =
|S|k−N

ΓN (k)|V|k
exp

[
−tr(V−1S)

]
, (9)

where

ΓN (k) = πN(N−1)/2
N∏
n=1

Γ(k − n+ 1) (10)

and V = ⟨ZZ̃⟩ is the N ×N covariance matrix.
The complex Wishart distribution is a multivariate

generalization of the Erlang distribution. Although it is
defined for integer k, in principle k can be set to a non-
integer value in Eq. (9), just as k in the Erlang can be set
to a non-integer value, thus leading to a gamma distribu-
tion. For this reason, we call the non-integer generaliza-
tion of Eq. (9) the matrix gamma distribution [15]. As
with the single variate gamma distribution, non-integer k

values larger than one may provide a useful approximation
for weak scattering.

Due to the statistical assumptions underlying the
derivation of the matrix gamma distribution, the marginals
of the diagonal elements must be gamma-distributed,
whereas the off-diagonal elements are VΓ-distributed.

4. MODULATED DISTRIBUTIONS

In this section, we consider distributions resulting when
parameters of the previously described distributions are
randomly varied, or modulated. This can be a useful mod-
eling approach when a larger-scale process randomly per-
turbs a smaller scale scattering process. This may hap-
pen, in particular, when environmental variability occurs
on scales much larger than the size of the inhomogeneities
that dominate the scattering, as charactereized by the Fres-
nel zone. The environmental variability may impact the
amplitude or phase of the signal, or both.

The starting point for modeling modulated distribu-
tions is a joint pdf of the amplitude and phase of the
signal, such as Eq. (3). Let us write the joint pdf as
fAΦ(a, ϕ|η, ξ), where η represents one or more fixed pa-
rameters, whereas ξ represents one or more parameters
that vary in response to changes in the environment. In
Eq. (3), for example, the parameters ν, θ, and σ2 would
each be assigned to one of these sets. We conceptual-
ize the parameters ξ as a random variable Ξ, for which a
new pdf fΞ(ξ|γ) is specified, in which γ represents one or
more statistical parameters upon which Ξ depends. Based
on this approach the integral for the marginalized pdf is

fAΦ(a, ϕ|η, γ) =
∫
fAΦ(a, ϕ|η, ξ)fΞ(ξ|γ) dξ. (11)

This is known as a compound pdf integral.

4.1 Amplitude modulation

Amplitude modulation can be caused by random varia-
tions in the environment that lead to varying strength of
the scattering, such as intermittent variations in turbulent
activity, or variations in the size and density of buildings.
For fully saturated scattering, it would be natural to modu-
late the scale parameter θ = 2σ2 in a gamma distribution.
Jakeman and Pusey [7], and Andrews and Phillips [8],
used a second gamma pdf for the modulation, resulting
in the K-distribution. Alternatiively, the inverse gamma
(IΓ) distribution, which is the Bayesian conjugate prior of
the gamma, can be used for the modulation. This results
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in a relatively simpler pdf called the compound gamma
(CΓ) distribution [16]. The CΓ is found by solving the
following integral, which is based on Eq. (11):

fCΓ(ζ|k, α, β) =
∫ ∞

0

fΓ(ζ|k, θ)fIΓ(θ|α, β)dθ. (12)

Details of the derivation can be found in Ref. [16]. The
result is

fCΓ(ζ|k, α, β) =
Γ(α+ k)

Γ(α)Γ(k)

(ζ/β)k−1

β(1 + ζ/β)α+k
. (13)

Here, α and β are the shape and scale parameters of the IΓ
pdf, which are referred to as the hyperparameters in this
context. The mean of the CΓ is kβ/(α− 1) (for α > 1)
and the variance is β2k (k + α− 1)/[(α− 1)2(α− 2)]
(for α > 2). Increasing α corresponds to decreasing scat-
tering intermittency; the limit α → ∞ corresponds to the
ordinary gamma distribution. Figure 5 plots the CΓ distri-
bution for various values of α and k. The scale parameter
β is set to (α− 1)/k, thus producing a mean of one.

Figure 5. Compound gamma distributions for vari-
ous values of the shape factor α and number of in-
coherent samples k. Different values of α are shown
as different colors. Increasing α corresponds to de-
creasing scattering intermittency. Solid lines are for
k = 1 and dashed lines are k = 4.

For radio-frequency scattering, Gurvich and
Kukharets [17] modulated θ in an exponential pdf (the
gamma pdf with k = 1) with a log-normal distribution.
This approach was adopted by Wilson et al. [18] for

acoustic scattering. Churnside and Clifford [19] modu-
lated a Rice distribution with a log-normal distribution
to model optical scintillations. The log-normal pdf is a
natural choice because it is commonly used to representat
intermittent turbulence. However, for weak intermittency,
the log-normal, gamma, and inverse gamma distributions
are all well approximated by a normal distribution
and hence effectively equivalent. Comparisons of the
compound gamma distribution to realistic simulations
of sound propagation through the atmosphere, using
parabolic equation (PE) methods, demonstrate excellent
agreement in a range of scenarios involving turbulent
scattering, refraction, and ground reflections [12]. A
similar PE study for outdoor sound propagation was also
performed recently by Renterghem et al. [20], although a
direct comparison is not possible because the data were
presented as sound levels (logarithms of ζ).

In the same manner as the gamma distribution, the
parameter θ = 2σσ′ in the VΓ distribution can be modu-
lated with an IΓ distribution. This results in the compound
variance gamma (CVΓ) distribution [21]:

fCVΓ(ζ|k, ρ, α, β) =
4kαβα(1− ρ2)k+α|ζ|2k−1

((1− ρ2)β + 2|ζ| − 2ρζ))2k+α

× Γ(2k + α)

Γ(k + α+ 1)Γ(k)
F
(
2k + α, k, k + α+ 1,

(1− ρ2)β − 2|ζ| − 2ρζ)

(1− ρ2)β + 2|ζ| − 2ρζ)

)
. (14)

where F is the Gauss hypergeometric function. The
mean of the CVΓ is (ρkβ)/(α− 1) and the variance is
{kβ2

[
(1 + ρ2)(α− 1) + 2ρ2k

]
}/{2(α− 1)2(α− 2)}.

4.2 Phase modulation

The phase distribution predicted by the basic Rice model,
Eq. (6), significantly underpredicts the phase variance ob-
served for sound propagation through atmospheric turbu-
lence [10]. The likely reason is that turbulence in the
atmospheric boundary layer spans a very broad range of
spatial scales, from centimeters to hundreds of meters. In
such scenarios, the large-scale turbulence drives strong
phase variations while having relatively little impact on
amplitude. To address this shortcoming, the basic Rice
model can be extended to include a random modulation in
the signal phase.

The large-scale phase modulation can be represented
with a pdf fΨ(ψ|γψ), where γψ indicates one or more sta-
tistical parameters upon which Ψ depends. Based on this
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approach, the compound pdf for the overall process is

fAΦ(a, ϕ|ν, σ2, γψ) =∫
fAΦ(a, ϕ|ν, ψ, σ2)fΨ(ψ|γψ)dψ, (15)

where Ψ is the randomized phase angle averaged over the
long time scale. The von Mises distribution is a conve-
nient and flexible choice for fΨ(ψ|γψ). It is given by

fVM (ψ|κ) = 1

2πI0(κ)
exp (κ cosψ) . (16)

Here κ is a measure of concentration: the larger the value
of κ, the smaller the angular variance. When κ ≪ 1, the
von Mises distribution becomes uniform over the interval
( −π, π]. The phase distribution for the signal is found by
marginalizing Eq. (15) over amplitude, with result [10]

fΦ(ϕ|ν, σ2, κ) =
exp

(
− ν2

2σ2

)
2πσ2I0(κ)

×
∫ ∞

0

ae−
a2

2σ2 I0

(√
κ2 +

2κνa cosϕ

σ2
+
ν2a2

σ4

)
da.

(17)

Although no analytical solution to this integral is avalable,
it can be readily evaluated numerically [10]. Note that the
phase modulation does not impact amplitude distribution.

5. CONCLUSION

Many different statistical distributions for the amplitude,
intensity, and phase of randomly scattered signals have
been proposed and studied in recent decades. Research
on this topic a spans a variety of applications in acous-
tics, optics, radio-frequency communications, and other
fields. This paper endeavored to provide a broad overview
that helps to draw the connections among some of the
commonly used various distributions. It also endeavored
to address significant gaps with regard to the best ap-
proaches for modeling the impacts of environmental vari-
ability and for the distributions at multiple sensors. In
particular, several extensions to the gamma distribution
were discussed: the compound gamma for signals that
have been scattered with randomly varying strength, the
variance gamma for the complex products (covariances
and cross spectra) between pairs of sensors, and the com-
pound variance gamma for signals at pairs of sensors

with varying scattering strength. Furthermore, the phase-
modulated Rice was described for signals scattered by in-
homogeneities spanning a broad range of spatial scales as
occurs in atmospheric turbulence.
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