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ABSTRACT

Parabolic equations are among most popular numeri-
cal techniques in many fields of physics including at-
mospheric and ocean acoustics. This article considers
extra-wide-angle, wide-angle, and narrow-angle parabolic
equations (EWAPE, WAPE, and NAPE, respectively) that
are valid for sound propagation in motionless and mov-
ing inhomogeneous media, and with arbitrary variations in
the sound speed and arbitrary (subsonic) Mach numbers.
Within the ranges of their applicability, these parabolic
equations exactly describe the phase of the sound waves
and are therefore termed the phase-conserving EWAPE,
WAPE, and NAPE. On the other hand, WAPEs and
NAPEs from the literature are valid for low Mach num-
bers and/or small variations in sound speed; they cor-
rectly describe the phase of a sound wave only within
these approximations. Although the variations in sound
speed and Mach number are often relatively small, omit-
ting second-order small terms pertinent to these quantities
can result in large cumulative phase errors for long prop-
agation ranges. Therefore, the phase-conserving EWAPE,
WAPE and NAPE can be preferable in applications. Nu-
merical implementation of the latter two equations can be
done with minimal modifications of existing PE codes.
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1. INTRODUCTION

In atmospheric acoustics, the narrow-angle parabolic
equation (NAPE) and wide-angle parabolic equation
(WAPE) are very efficient numerical techniques that can
handle many phenomena such as stratification and refrac-
tion, scattering by turbulence and other inhomogeneities,
ground impedance, and propagation over slowly varying
terrain [1, 2]. NAPEs and WAPEs are also used in ocean
acoustics [3], nonlinear acoustics [4], and other fields such
as electromagnetic and seismic wave propagation.

Section 11.2 in Ref. [2] suggests considering WAPEs
in the high-frequency (short-wavelength) approximation
when the derivatives of the sound speed, density, and
medium velocity can be omitted. The resulting WAPEs
become much simpler than the previously used equations
[5, 6] and can still be used in many applications. Os-
tashev et al. [7] build on this approach and formulate
new EWAPEs (extra-wide-angle parabolic equations or
one-way equations), WAPEs, and NAPEs in the high-
frequency approximation.

In particular, Ref. [7] derives the EWAPE [given by
Eq. (B1)] that is applicable to arbitrary variations in the
sound speed and arbitrary (subsonic) Mach numbers, but
considers this equation only very briefly in Appendix B.
The goal of the present article is to analyze this EWAPE
and the WAPE and NAPE which can be obtained from
this equation in detail. The results obtained are pertinent
to sound propagation in both motionless and moving in-
homogeneous media.

The EWAPE, WAPE, and NAPE considered in this
article can be preferable to those used in the literature be-
cause the latter equations are valid for low Mach numbers
and/or small variations in the sound speed. Although the
sound-speed variations and Mach numbers are often rela-
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tively small, omitting second-order small terms pertinent
to these quantities might result in significant cumulative
phase errors for long propagation ranges (see Ref. [7] for
details). Furthermore, within the ranges of their applica-
bility, the EWAPE, WAPE, and NAPE considered in the
present article exactly describe the phase of a sound wave
and are termed the phase-conserving parabolic equations.
On the other hand, WAPEs and NAPEs from the literature,
correctly describe the phase of a sound wave only for low
Mach numbers and/or small variations in the sound speed.

This article is organized as follows. Section 2 consid-
ers the phase-conserving EWAPE, WAPE, and NAPE. In
Sec. 3, numerical implementation of the WAPE and NAPE
is outlined and numerical results are presented. The re-
sults are summarized in Sec. 4.

2. PHASE-CONSERVING EWAPE, WAPE, AND
NAPE

2.1 Parabolic equations

Reference [7] expresses the sound pressure p of a
monochromatic sound wave in terms of the auxiliary func-
tion ϕ:

p(R) =

√
ϱ

ϱ0

(
1 +

i

ω
v · ∇

)
ϕ(R). (1)

Here, R = (x, y, z) are the Cartesian coordinates, v(R)
is the medium velocity, ϱ(R) and ϱ0 are the density and its
reference value, and ω is the frequency of the sound wave.
The auxiliary function satisfies the convective Helmholtz
equation, Eq. (28) in Ref. [7]. Starting with this equa-
tion and omitting the derivatives of the sound speed c and
medium velocity v, the following EWAPE is derived(

∂

∂x
+ ikcτ̂ − ikcγ

2
x

√
1 + µ̂+ χ̂

)
ϕ = 0. (2)

This equation describes sound propagation in the positive
direction of the x-axis, i.e., it is valid for the angles θ <
90◦ between the direction of sound propagation and the
x-axis. In Eq. (2), the following notations are used

kc =
ω

c
, Mx =

vx
c
, γx =

1√
1−M2

x

,

m̂⊥ =
i

ω
v⊥ · ∇⊥, τ̂ = Mxγ

2
x (1 + m̂⊥) ,

µ̂ =
1

k2cγ
2
x

∇2
⊥, χ̂ = 2m̂⊥ + m̂2

⊥. (3)

Here, kc is the wavenumber in a motionless medium, vx
and v⊥ = (vy, vz) are the velocity components in the di-
rection of the x-axis and in the transverse plane (y, z),
respectively, and Mx and γx are the Mach number and
Lorentz factor pertinent to vx. Furthermore, the operators
∇⊥ = (∂/∂y, ∂/∂z), m̂⊥, τ̂ , µ̂, and χ̂ act on the trans-
verse coordinates y and z.

The EWAPE [Eq. (2)] is derived by applying the high-
frequency approximation to the linearized equations of
fluid dynamics and omitting the derivatives of the ambient
quantities. Other than that this equation is valid for arbi-
trary variations in the sound speed and arbitrary (subsonic)
Mach numbers M = v/c. Equation (2) coincides with
Eq. (B1) in Ref. [7], where it is considered only briefly.
The main goal of the present article is to consider Eq. (2)
in detail and to formulate the WAPE and NAPE starting
with this equation.

In the literature, WAPEs are usually derived from the
corresponding EWAPEs by approximating a square-root
pseudo-differential operator with the Padé (n,n) series.
Applying this approach to the EWAPE given by Eq. (2)
yields[

∂

∂x
− iω

ceff
− Mxγ

2
x

c
v⊥ · ∇⊥

− ikcγ
2
x

n∑
j=1

aj,n(µ̂+ χ̂)

1 + bj,n(µ̂+ χ̂)

]
ϕ = 0. (4)

In this equation, ceff = c+ vx is the effective sound speed
which is introduced as a convenient notation rather than
an approximation. Furthermore, the coefficients aj,n and
bj,n are given by

aj,n =
2

2n+ 1
sin2

jπ

2n+ 1
, bj,n = cos2

jπ

2n+ 1
. (5)

Equation (4) is the desired WAPE valid for the arbitrary
variations in the sound speed and Mach numbers. In the
Padé (1,1) approximation, n = 1 so that only the first term
in the series in Eq. (4) is retained. In this approximation,
the WAPE is valid for the propagation angles θ ≲ 35◦ [3,
7]. Numerical implementation of this WAPE is considered
in Sec. 3.

The NAPE can be derived from Eq. (2) by approxi-
mating the square-root operator with the Taylor series and
keeping terms of order θ and θ2. The result is(

∂

∂x
− i

2kc
∆⊥ − iω

ceff
+

1

ceff
v⊥ · ∇⊥

)
ϕ = 0. (6)
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This equation is the desired NAPE valid for arbitrary vari-
ations in the sound speed and Mach numbers. Equa-
tion (6) is applicable for the propagation angles θ ≲ 20◦

[3, 7]. Section 3 considers numerical implementation of
this equation.

2.2 Analysis

The EWAPE, WAPE, and NAPE from Sec. 2.1 are valid
for arbitrary variations in the sound speed and arbitrary
Mach numbers. On the other hand, in the literature, many
EWAPEs and all WAPEs and NAPEs are valid for low
Mach numbers and/or small variations in the sound speed.

To further investigate the ranges of applicability of
these parabolic equations, they are compared here to the
geometrical acoustics equations. Specifically, starting
with the EWAPE [Eq. (2)], WAPE [Eq. (4)], and NAPE
[Eq. (6)], the eikonal equations can be derived which de-
scribe the phase of a sound wave propagating in an in-
homogeneous medium. It can be shown that these eikonal
equations coincide with the eikonal equation known in ge-
ometrical acoustics, within the ranges of applicability of
the EWAPE, WAPE, and NAPE (i.e., for θ < 90◦, θ ≲
35◦, and θ ≲ 20◦, respectively). Therefore, the parabolic
equations from Sec. 2.1 are termed the phase-conserving
EWAPE, WAPE, and NAPE. On the other hand, using a
similar approach, it can be shown that WAPEs and NAPEs
from the literature correctly describe the phase of a sound
wave only for low Mach numbers and/or small variations
in the sound speed.

The ranges of applicability of EWAPEs, WAPEs, and
NAPEs can also be investigated by comparing them with
the exact equations for sound propagation in a stratified
moving medium, e.g., Eqs. (2.63) and (2.64) in Ref. [2]. It
can be shown that withing the ranges of their applicability,
the phase-conserving EWAPE [Eq. (2)], WAPE [Eq. (4)],
and NAPE [Eq. (6)] coincide with the high-frequency ap-
proximation of the exact equations. On the other hand,
WAPEs and NAPEs from the literature coincide with the
exact equations only for low Mach numbers and/or small
variations in the sound speed.

3. NUMERICAL IMPLEMENTATION

3.1 WAPE and NAPE

In this section, numerical implementation of the phase-
conserving WAPE [Eq. (4)] and NAPE [Eq. (6)] is pre-
sented.

We will consider 2D sound propagation in the vertical
(x, z) plane and assume that vz = 0. In this case, the
operators in Eq. (3) simplify significantly. We also express
the auxiliary function in the form

ϕ(x, z) = ϕ̂(x, z)eik0x, (7)

where ϕ̂ is the complex amplitude and k0 = ω/c0 and c0
are the reference wavenumber and sound speed.

Substituting with Eq. (7), the phase-conserving
WAPE [Eq. (4)] in the Padé (1,1) approximation can be
written as(

h1,0 +
h1,2

k20

∂2

∂z2

)
∂ϕ̂

∂x
= ik0

(
h2,0 +

h2,2

k20

∂2

∂z2

)
ϕ̂,

(8)
where the coefficients hn,m are given by

h1,0 = 1, h1,2 =
b1,1
n2γ2

x

, h2,0 =
c0
ceff

− 1,

h2,2 =
a1,1
n

+
b1,1h2,0

n2γ2
x

. (9)

Here, n = c0/c is the refraction index in a motion-
less medium and a1,1 = 1/2 and b1,1 = 1/4. Equa-
tion (8) can be efficiently solved numerically using the
Crank-Nicholson approach as described in Ref. [7] and
Sec. 11.2.2 of Ref. [2]

Substituting with Eq. (7), the phase-conserving NAPE
[Eq. (6)] can be written as Eq. (8) but with different coef-
ficients:

h1,0 = 1, h1,2 = 0,

h2,0 =
c0
ceff

− 1, h2,2 =
1

2n
. (10)

The NAPE solution proceeds similarly to that of Eq. (8).

3.2 Numerical results

Let a point source be located above rigid ground in a uni-
formly moving medium. The sound pressure due to the
source is a sum of the direct and ground reflected waves.
Section VI B in Ref. [7] provides analytical formulas for
the auxiliary functions ϕ corresponding to these waves.
These results and Eq. (1) enable us to calculate the rela-
tive sound pressure level

∆L(x, z) = 20 log10

(
|p(x, z)|
|p0(x, z)|

)
. (11)
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Figure 1. Relative sound pressure level ∆L due to a
point source above rigid ground in a uniformly mov-
ing medium versus the propagation range x. The
curves correspond to the analytical solution and nu-
merical results obtained with the phase-conserving
WAPE and NAPE and the WAPE based on the effec-
tive sound speed approximation.

Here, p0 is the sound pressure due the point source in free
space.

The analytical solution for ∆L versus the propagation
range x is depicted as the solid curve in Fig. 1. The re-
sults correspond to the source located at (xs = 0m.zs =
50m), the receiver at 2 m above the ground, the sound
frequency 100 Hz, and the medium moving in the positive
direction of the x-axis with the Mach number Mx = 0.5.
In Fig. 1, x varies from −1 km to 1 km. Figure 2 is an
insert from Fig. 1 for 50m ≤ x ≤ 250m.

Figures 1 and 2 also depict ∆L calculated with the
phase-conserving WAPE [Eqs. (8) and (9)] and NAPE
[Eqs. (8) and (10)]. To correctly predict locations of the
interference maxima and minima, a range step in the di-
rection of the x-axis is 1/40 of the sound wavelength. It
follows from these figures that the WAPE results are close
to the analytical solution for the propagation ranges |x| ≳
120 m, when the angle θ becomes relatively small. The
relative sound pressure level calculated with the NAPE
is close to the analytical solution and WAPE results for
|x| ≳ 200 m.

Interestingly, some of the coefficients hi,j pertinent to
the phase-conserving WAPE and NAPE differ [compare
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Figure 2. Same as in Fig. 1 but for 50m ≤ x ≤
250m.

Eqs. (9) and (10)]. Nevertheless, the WAPE and NAPE
solutions are close for |x| ≳ 200 m, as they should be.

Figures 1 and 2 also depict the relative sound pres-
sure level ∆L obtained with the Padé (1,1) approximation
of the WAPE based on the effective sound speed approx-
imation [e.g., Eq. (56) from Ref. [7], formulated for the
sound pressure p]. The results significantly deviate from
the analytical solution and those obtained with the phase-
conserving WAPE and NAPE.

4. CONCLUSIONS

This article considered the phase-conserving EWAPE
[Eq. (2)], WAPE [Eq. (4)], and NAPE [Eq. (6)]. These
equations are derived in the high-frequency approxima-
tion and provided that the derivatives of the ambient quan-
tities can be omitted. Within the ranges of their applicabil-
ity, the EWAPE, WAPE, and NAPE exactly describe the
phase of sound waves and are valid for arbitrary variations
in the sound speed and arbitrary (subsonic) Mach num-
bers. These equations also correctly describe sound prop-
agation in a stratified moving medium. Numerical im-
plementation of the phase-conserving WAPE and NAPE
can be done with minimal modifications of the existing
codes. The phase-conserving EWAPE, WAPE, and NAPE
are pertinent for sound propagation in both motionless and
moving inhomogeneous media.

WAPEs and NAPEs from the literature correctly de-
scribe the phase of a sound wave only for low Mach num-
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bers and/or small variations in the sound speed. Although
these quantities are often relatively small, omitting the
corresponding second-order small terms can result in sig-
nificant phase errors for long propagation ranges. There-
fore, it is preferable to use the phase-conserving EWAPE,
WAPE, and NAPE in practical applications.
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