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ABSTRACT

From a Bayesian perspective, sensory information in the

brain is represented in the form of probability distribu-

tions. Inherent to these probability distributions is the rep-

resentation of uncertainty due to sensory noise and am-

biguity. Dynamic listening using head movements is a

multisensory process which involves several sources of

sensory uncertainty. In this study, we introduce the nu-

merical implementation of a Bayesian dynamic sound lo-

calisation model and investigate how the model’s sensory

noise parameters affect its localisation performance over

the 2D sphere assuming static sound-sources in the far

field. We restrict ourselves to small, open-loop head ro-

tations. Six noise parameters that describe both acous-

tic and sensorimotor measurements are proposed and in-

vestigated through a sensitivity analysis. The localisation

performance is expressed in lateral error, polar error and

front-back confusion rate. The results from this sensitivity

analysis will be compared in the future to empirical data.

Keywords: Sound localisation, head movement, multi-

sensory integration, Bayesian inference.

1. INTRODUCTION

Recently, we proposed a Bayesian framework to model

sound localisation that includes self motion, i.e., head

movements [1]. Fundamentally, it is an extension of the

static ideal-observer model presented by Reijniers et al.,

which used the same Bayesian theory to determine the

conditional probability distribution of the sound-source

direction ψ, given the available acoustic input and prior

information [2].

The present implementation expands the static model

on two fronts. First, the model no longer relies on a sin-

gle measurement, but instead makes an observation of the

available cues at set intervals during stimulus presenta-

tion [3]. This means that the the posterior distribution of

the sound-source location can be recursively updated as

more information becomes available. Second, the head

position can be controlled over time. From this follows

that not just acoustic information, but also sensorimotor

information must be processed.

We previously provided a numerical implementation

of the theoretical framework as a proof of concept, which

qualitatively showed what information on source location

could be gained from head movement [1]. However, a

more in-depth analysis of its output remained to be car-

ried out. Moreover, this proof of concept relied on two

significant simplifications: 1) it encoded interaural time

differences (ITDs) as the only available dynamic acoustic

cue, ignoring temporal changes in spectral cues and 2) it

assumed the head positions to be fully deterministic, i.e.,

without uncertainty.

In this paper, we remove these two simplifications

and use the model to study human dynamic localisation

over the full 2D sphere in the far field (i.e., direction esti-

mation) when presented with a broadband sound-source.

This model is publicly available as "mclachlan2023"

in the Auditory Modeling Toolbox [4]. Through a sensi-

tivity analysis we will investigate the effect of the different

model parameters on localisation performance.

2. MODEL EXTENSION

2.1 Acoustic and sensorimotor information

The present model assumes the same feature space of the

acoustic input static ideal-observer model by Reijniers et

al. [2]: yA, which consists of the noiseless ”true” state of

the acoustic information, XA, convolved with noise due

to uncertainty caused by the auditory system or the envi-

ronment:
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yA = [Xitd + δitd,X− + δ−,X+ + δ+], (1)

X− = XL −XR, (2a)

X+ = [XL +XR]/2, (2b)

XL/R = S+HL/R, (2c)

where XL and XR are the frequencywise sum log-

magnitudes of the sound source spectrum, S, and the

HRTF, HL and HR, for the left and right ear, respectively.

X− and X+ then correspond with the interaural spectral

difference and an average of both monaural spectra, re-

spectively. Note that this transformation is not strictly

necessary, but aids to interpret and discuss the results. The

noise sources are described as follows:

δitd ∼ N (0, σ2
itd) (3a)

δ− ∼ N (0,Σ−), Σ− = 2σ2
I · I (3b)

δ+ ∼ N (0,Σ+), Σ+ = (σ2
I/2 + σ2

S) · I+ σ (3c)

Variances σ2
I , σ2

S and σ2 model the noises on the spec-

tral measurements, the subject’s knowledge of the sound-

source spectrum, and the cross-talk between adjacent fre-

quency bands, respectively.

Finally, there is the sensorimotor component. Similar

to yA, yH denotes the noisy observation of the true state of

the head orientation θH , which is applied to both azimuth

and elevation. At each time step, θH is updated with a

motor control signal u, which denotes a rotation of the

head around the yaw or pitch axis. These variables are

defined as:

yH(ti) = θH(ti) + δH , (4a)

θH(ti+1) = θH(ti) + u(ti)∆t+ δu, (4b)

δH and δu are the noises on the head orientation ob-

servation and the motor command, respectively. These

noises ar applied to both the azimuth and elevation angles

and are defined as:

δH ∼ N (0, σ2
H), (5a)

δu ∼ N (0, σ2
u), (5b)

Note that, for easier notation, most equations above

are not described as functions of time. In reality, new

measurements are made at each time step (e.g., yA(ti))
and the noise variance parameters can change over time

(e.g., σitd(ti)).

2.2 Recursive Bayesian estimation

We model temporal integration of acoustic and sensori-

motor information through recursive Bayesian estimation,

where probability density functions (PDFs) are updated

recursively over time with incoming measurements.

Following Bayes’ Theorem, this process can be sim-

ply written as:

pti = C · pti−1
·M, (6)

Turning to Bayesian terminology, pti denotes the pos-

terior PDF, pti−1
denotes the prior PDF and M denotes the

joint sensor model which computes the likelihood. C is a

normalisation constant. Note that the prior at time step ti
equals the posterior from time step ti−1. At the initiation

of the recursive process, pti−1
= p(ψ), which is the spa-

tial prior, or the prior knowledge of the sound direction. A

detailed description of this equation is given in [1].

Fig. 1 demonstrates the recursive process for 5 time

steps with a time step size ∆t of 5 ms. Here the left two

columns accumulate into an increasingly narrow distribu-

tion. We see that, despite the large variance between each

look, the cumulative distribution very quickly (after 25ms)

decreases in spread.

This specific example shows the process that will re-

sult in a fairly successful localisation estimate, which is

presented in Fig. 2a. This does not necessarily need to

happen. Fig. 2 shows the results for three different it-

erations of the same model parameters. If system noise

causes enough incorrect observations, then localisation

can be affected either by an inability to narrow the dis-

tribution (Fig. 2b), or by a narrowing of the distribution

around an incorrect direction (Fig. 2c). The first effect

can be considered detrimental to precision, whereas the

second effect is detrimental to accuracy.

3. METHODS

A sensitivity analysis was conducted to determine how the

different noise parameters affect the model’s localisation

performance. We considered three rotation conditions,

1527 target directions (distributed over the full sphere

above an elevation of −30) and seven different individ-

ual head-related transfer functions (HRTFs), obtained in

an earlier study [5]. Simulations were repeated 50 times

per target direction per HRTF. For yaw and pitch rotation

conditions, half of the simulations rotated the head in the

positive direction and the other half rotated in the negative

direction.
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Figure 1. Probability density functions of the sound-

source direction over the full sphere at time steps t=1-

5, with the time between each step ∆t set at 5ms.

Left two columns: single look PDF at each time step.

Right two columns: cumulative PDF, i.e., recursive

posterior distribution at each time step. The blue ’x’

marks the true source direction.

The input stimulus was a 100ms broadband white

noise burst. For the movement conditions, rotations of

10◦ were deployed at a constant speed of 100◦/s along

either the yaw or pitch axis. The initial head orientation

was straight ahead, i.e., 0◦ azimuth and 0◦ elevation. The

model worked with a time step size ∆t of 5 ms, so the pos-

terior was updated every 5 ms. The spatial prior was set to

a uniform distribution to best visualise the effect of each

tested parameter. To obtain a point estimate from the pos-

terior PDF, we applied the maximum a-posteriori (MAP)

estimate, which selects the mode of the distribution.

Localisation performance was evaluated based on

three metrics: the lateral and polar root mean square er-

ror ϵL & ϵP (degrees) and the quadrant error ϵQ (% of

trials), as defined in [6].

Figure 2. Three examples of probability density

functions over the full sphere of the same sound-

source direction at final time step t=21. a) accurate

estimate, b) smeared estimate c) front-back confu-

sion. The blue ’x’ marks the true source direction.

The tested parameters and their control values are pre-

sented in Tab. 1. In preliminary simulations, it became

apparent that the standard deviations of the noise models

chosen in [2] were too low to provide insightful results.

For this reason, the control values for acoustic noise were

set large enough to see the effects of each individual pa-

rameter. Every parameter was adjusted individually, be-

cause an investigation of the interaction effects would go

beyond the scope of this work. For this same reason the

sensorimotor control noise was set to zero: to prevent any

interaction effects between sensorimotor and acoustic un-

certainty during the analysis.

269



10th Convention of the European Acoustics Association

Turin, Italy • 11th – 15th September 2023 • Politecnico di Torino

Table 1. Noise parameters included in the sensitiv-

ity analysis, including descriptions of the signal they

affect and their control values.

Noise on: Symbol Value

ITD look σitd 3 JND

Spectrum look σI 20 dB

Source knowledge σS 20 dB

Head orientation look σH 0◦

Head motor signal σu 0◦

4. RESULTS

Tab. 2 presents the results of the sensitivity analysis, av-

eraged over 7 virtual subjects, 1527 source directions and

50 repetitions. This serves as a starting point to determine

the general effect of each noise parameter under different

movement conditions. Fig. 3 presents the same results for

ϵL and ϵP , distributed over the full sphere for the static (no

movement) condition. This figure provides an insight on

the direction-dependent effects of each noise source. Be-

cause the spatial effects of ϵP and ϵQ were very similar,

we decided to omit figures for ϵQ.

5. DISCUSSION

Before beginning the discussion it must be noted that the

purpose of this analysis is not to match the model out-

put to empirical data, but to test the influence of each

noise source to assist parametrisation of the model in a

future stage. The noise sources were divided into three

categories: timing noise, spectral noise and sensorimotor

noise. Each category will be discussed separately.

5.1 Control

Comparing between the three rotation conditions, it be-

comes apparent that yaw rotation provides a lot of infor-

mation on the polar angle and the quadrant in which the

sound-source is located. The decreases in ϵP and ϵQ can

be explained by the hypothesis on the effect of head ro-

tations posed in [7]. The sign of the change in ITD that

accompanies a head rotation is an unambiguous indica-

tor of the proper hemisphere, which reduces quadrant er-

rors. Additionally, the rate of change in source azimuth

angle relative to the change in head orientation can theo-

Table 2. Lateral and polar root mean square error

(ϵL, ϵP ) and quadrant error rate (ϵQ) for five tested

noise parameters and three rotation conditions, aver-

aged over 7 virtual subjects, 1527 source directions

and 50 repetitions. Values are rounded to one deci-

mal place.

STATIC ϵL ϵP ϵQ
control 4.1◦ 24.2◦ 8.1%

2 · σitd 6.1◦ 25.4◦ 8.8%

2 · σI 4.7◦ 30.1◦ 15.8%

2 · σS 4.0◦ 25.9◦ 11.4%

σH = 10 4.7◦ 25.4◦ 9.3%

σu = 2 4.6◦ 21.8◦ 4.3%

YAW ϵL ϵP ϵQ
control 4.6◦ 22.8◦ 5.1%

2 · σitd 6.5◦ 24.7◦ 7.0%

2 · σI 5.5◦ 28.8◦ 10.4%

2 · σS 4.5◦ 24.4◦ 6.6%

σH = 10 5.3◦ 24.1◦ 6.1%

σu = 2 4.7◦ 20.7◦ 3.5%

PITCH ϵL ϵP ϵQ
control 4.1◦ 24.3◦ 8.1%

2 · σitd 6.1◦ 25.5◦ 8.8%

2 · σI 4.7◦ 30.3◦ 15.9%

2 · σS 4.1◦ 26.0◦ 11.5%

σH = 10 4.8◦ 25.4◦ 9.1%

σu = 2 4.6◦ 21.4◦ 4.0%

retically provide information on elevation angle. Pitch ro-

tation does not affect localisation whatsoever, this agrees

with the results from earlier studies [5].

5.2 Timing noise

In all rotation conditions, an increase in σitd causes a 50%
increase in ϵL. This is no surprise: interaural cues are

mostly informative about the lateral angle of a source.

Perhaps more surprising are the small decreases in per-

formance for the other two metrics. Looking at Fig. 3a,

we see that these small effects mostly take place behind

the listener and away from the median plane. This sug-

gests that there are small asymmetries in the ITD between
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the front and back hemispheres, which in the control con-

dition sometimes (although rarely) provided information

on the correct hemisphere. Note that the effect on ϵQ
is larger during yaw rotation, because an increased σitd
makes it more difficult to utilise the ITD rate of change,

which, as mentioned before, is an indicator of the correct

hemisphere.

Figure 3. Model root mean square error difference

between control values and separately varied model

parameters, during static localisation. Left column:

lateral error ϵL, right column: polar error ϵP . a)

2 · σitd, b) 2 · σI , c) 2 · σS , d) σH = 10, e) σu = 2.

The results are plotted for 1527 target directions over

the full sphere relative to the torso. Results were av-

eraged over 7 subjects and 50 trials per subject per

direction.

5.3 Spectral noise

When σI is increased, we see highly detrimental effects

for both ϵP and ϵQ, this can be explained by the well-

known role that spectral cues play in localisation along the

sagittal planes. Lateral error ϵL is also increased, although

this effect is minimised due to the complementary nature

between interaural timing and level differences. For yaw

rotation, an increase on spectral noise has a much smaller

effect on ϵQ. This again demonstrates how dynamic ITD

as a function of head rotation serves as a strong cue to

prevent quadrant errors. The spatial analysis (Fig. 3b)

shows that error increases are largest away from the me-

dian plane, this is likely because locations around the me-

dian plane are still partly supported by Xitd and X+,

which are not or less severely affected by σI .

An increase in σS has no effect on ϵL, because knowl-

edge of the source spectrum is irrelevant to lateral locali-

sation. It also appears to be only slightly detrimental to ϵP
and ϵQ. However, looking at Fig. 3c, we see that specif-

ically directions around the median plane are much more

heavily influenced than others, which contrasts to the ef-

fects in 3b. Indeed, on the median plane the listener can

extract less information regarding the polar angle from

X− because of symmetry, and relies more on X+ [2].

This requires knowledge of the sound-source, which be-

comes uncertain as σS increases.

5.4 Sensorimotor noise

A higher σH results in an increased error for all three met-

rics. This is not surprising, as one would expect an uncer-

tainty of the orientation of the head and ears to correspond

with a smearing of the direction estimate. Fig. 3 shows

that this smearing occurs more severely for sources close

to straight ahead (0, 0) and behind (0, 180). This can be

explained by the fact that σH is two-dimensional, i.e., it

applies to the orientation of the head along the pitch and

the yaw axis. Sources above the listener only suffer from

the uncertainty in pitch and sources to the left or the right

only suffer from the uncertainty in yaw. Whereas the di-

rections at (0, 0) and (0, 180) are affected by both yaw

and pitch uncertainty. In other words, this is an artifact of

the present definition of the movement model, and empir-

ical data would be required to determine if this adequately

simulates true movements.

It may be counter-intuitive that an increase in noise

on the motor control signal σu improves polar localisation

(ϵP and ϵQ), but it can be easily explained by considering

equation 4. When δu is high, it means that the true head

orientation θH(ti+1) deviates far from the previous orien-

tation θH(ti). If this deviation is large enough, then pos-

itive effects similar to those in the yaw rotation condition

can be expected. This result raises the question about the

validity of localisation experiments where subjects were

instructed to remain still, as it is possible that a deviation

from the instructed position accidentally provided addi-

tional acoustic cues.
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6. CONCLUSION & OUTLOOK

In this work we investigated the dynamic localisation

model described in [1] through a sensitivity analysis of the

sensory noise parameters. The current parameters already

provide much control and insight on the role of acoustic

and sensorimotor information during sound-localisation,

but the present Bayesian framework makes it easy to im-

plement additional elements. To conclude, we will list a

number of possible adjustments, based on psychoacoustic

findings. Note that this list is intended to shed a light on

the potential of the recursive Bayesian framework, but is

by no means exhaustive.

First, the feature space may be reformulated to be

more representative of the acoustic cues that humans

utilise for sound localisation. For example, several studies

found that the positive spectral gradient may be a more ap-

propriate localization cue than the absolute spectral values

in each frequency band [8].

Second, lateral and polar estimation may be split into

two separate processes. There is some neurological evi-

dence that this may be the case [9], and previous work has

shown that this split significantly affects the output of the

Bayesian model [10]. One way of splitting this process

is by applying a Bayesian decision rule depending on the

plane of localization, e.g., maximum a-posteriori for the

lateral angle and random sampling for the polar angle.

Third, a non-uniform spatial prior can be imple-

mented. Empirical findings suggest that a Gaussian dis-

tribution around the horizontal plane may better describe

elevation estimation [9].

Finally, earlier work showed that the introduction of

a pointing error to the Bayesian estimator successfully ac-

counted for the deviance between model and experimen-

tal data [8]. It is important to note here, however, that

this pointing error cannot be included arbitrarily. To pre-

vent that this noise is simply added to account for any de-

viating results, its values should be carefully chosen and

grounded in empirical evidence, e.g., a higher pointing er-

ror for sources behind the listener.
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