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ABSTRACT

Optimization algorithms used in underwater geoacoustic
inversion are time-consuming since they need many iter-
ations to approach a global minimum. An efficient geoa-
coustic inversion approach based on deep reinforcement
learning is proposed to estimate seabed shear wave veloc-
ity profiles. The model is built upon the deep-Q network
with a specially designed environment and an agent. The
performance of this approach has been validated by simu-
lation cases in our previous work. In this paper, the model
is applied to real-world scenarios to estimate seabed shear
wave velocity profiles. The approach is assessed on dis-
persion curves of the ocean seismic interface waves gener-
ated by real data against several optimization algorithms
commonly used in underwater acoustics for geoacoustic
inversion. Two cases are considered for extracting the
interface wave dispersion curves. One set of the disper-
sion curves extracted from the data generated by an active
shear source detects shallow sediment layers, while the
second set of the dispersion curves estimated from pas-
sive ocean ambient noise can reach about reservoir depth.
The assessment results demonstrate that the proposed ap-
proach is efficient in terms of accuracy and computational
time.
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1. INTRODUCTION

Shear-wave velocity is sensitive to changes in properties
of the medium, especially to changes in its rigidity [1].
Knowledge of shear-wave velocity in marine sediments
is important for geotechnical applications and exploration
engineering [2, 3]. In general, the shear wave veloc-
ity profile in the seabed can be estimated by inverting
the dispersion curves of the seismic interface waves (i.e.,
Scholte waves in this paper) [4]. The conventional ap-
proach for geoacoustic inversion is the optimization-based
approach, which exploits an optimization method to itera-
tively search in the high-dimensional parameter space and
find out the solution best fits the observed data [5]. Some
optimization methods have been demonstrated to perform
well for geoacoustic inversions, such as the genetic algo-
rithm (GA) [6], differential evolution (DE) [7], and adap-
tive simplex simulated annealing (ASSA) [8].

However, the existing optimization methods have
fixed search strategies which may not be very efficient.
With the development of artificial intelligence and ma-
chine learning, deep reinforcement learning (DRL) is get-
ting attention for its superiority in intelligent control and
robotics, which can iteratively update the model by in-
teracting with the environment to achieve good data fit-
ting [9]. From this perspective, DRL can be intuitively ap-
plied to geoacoustic inversion by exploiting a DRL model
instead of the conventional optimization method to guide
the agent search in the parameter space, which can in-
troduce a learnable search strategy and conduct inversion
more efficiently [10].

In this paper, a geoacoustic inversion framework
based on the deep-Q network (DQN-framework) is ap-
plied to estimate shear-wave velocity. The DQN-
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framework was proposed in our previous work and vali-
dated in simulation cases [10]. This paper aims to assess
the inversion performance of the DQN-framework on real
cases based on field data. Specifically, two sets of dis-
persion curves are used, which were extracted from the
interface waves generated by an active shear source and
passive ambient noise, respectively. In the assessment,
the DQN-framework is compared with three popular opti-
mization methods (i.e, GA, DE, and ASSA) most used for
geoacoustic inversion.

The remainder of this paper is organized as follows.
Sec. 2 provides a brief methodology of the adopted frame-
work for geoacoustic inversion. The case study and per-
formance analysis are presented in Sec. 3. Finally, the
conclusions are given in Sec. 4.

2. GEOACOUSTIC INVERSION FRAMEWORK
BASED ON DQN

Figure 1. Inversion workflow.

The inversion workflow is shown in Fig. 1, where
three key concepts are worthy to be presented:

• The environment consists of a physical forward
model for calculating the replica, the observed
data, and a misfit function for measuring the mis-
match between the observed data and the replica. It
receives a set of selected parameters from the agent
and provides feedback to the agent.

• An agent is an operator that samples from the pa-
rameter space following its search strategy and in-
teracts with the environment. During each iteration
of inversion, the agent will log the feedback from
the environment, the instant best solution, and the
related information.

• A parameter space is a multi-dimensional space de-
fined by the search bounds.

DQN is a popular DRL method, which is derived from
Q-learning and can learn an optimal strategy by estimating
the quality (Q-value) of executing an action given a certain
environment state [9].

The environment state indicates the progress of the
inversion, which is formulated as a vector with six com-
ponents:

Si = [min(Ei),mean(Ei), std(Ei),

∆min(E),∆mean(E),∆std(E)]
(1)

where i refers to the ith iteration, min(.), mean(.),
and std(.) are operators for calculating minimum,
mean, and standard deviation, respectively. E =
[E1, . . . , Ek]/Enorm refers to the normalized misfit val-
ues corresponding to k sets of parameters selected by the
agent, where Enorm is the minimum misfit value in the
initialization stage and acts as the normalization factor. ∆
is an operator for calculating the difference from the last
iteration, e.g., ∆min(E) = min(Ei−1)−min(Ei).

The agent consists of an inner state (so-called agent
state) for logging the potential solution and an action
space for selecting the potential actions that will be exe-
cuted during a certain iteration. The agent state is updated
based on the feedback from the environment during each
iteration, which can be formulated as

Sagent
i = [Bi,mi,mi

mean,m
i
std] (2)

where B refers to the search bounds of the parameters,
m is a set of parameters with the lowest misfit value
among the k-selected sets. mmean and mstd are mean and
standard deviation values of the parameters, respectively,
whose misfit values are the first 30% lowest values among
the k-selected sets.

The action space includes two actions for sampling
from the parameter space, in which each action consists
of a sampling operation and an update rule. More specifi-
cally, Action 0 samples from the search bounds B with the
uniform distribution and iteratively searches the solution
by compressing B. Action 1 samples with the Gaussian
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distribution and iteratively searches the solution by updat-
ing mmean and mstd of the selected k sets.

As shown in Fig. 1, the inversion starts with an ini-
tial stage defining the original geoacoustic model and the
search bounds of each geoacoustic parameter. In each it-
eration, the agent executes the action corresponding to a
larger Q-value, samples from the parameter space, and
passes the selected parameters to the environment. The
environment creates a replica correspondingly, calculates
the misfit, and provides feedback to the agent. The pro-
cess stops once the termination criteria are met.

Please note that this section is a brief rephrasing of
the DQN-based inversion framework proposed in our
previous work. More details about the framework and the
configuration of the environment and agent can be found
in [10].

3. CASE STUDY AND PERFORMANCE
ANALYSIS

In this paper, the DQN-framework is adopted to estimate
the shear-wave velocity based on the dispersion data of
interface waves. The proposed approach is compared
with the three optimization methods (GA, DE, and ASSA)
most used for geoacoustic inversion. Two sets of disper-
sion data previously retrieved by Dong et al. [2], and Li
et al. [3] are used in the case study, which correspond to
the Scholte waves generated by an active shear source and
passive ambient noise, respectively. Due to the limitations
on access to proprietary raw data, the available data are
the published frequency dependence of the phase speed of
Scholte waves. To increase the reliability of the assess-
ment, the inversion results discussed in this section are
based on 100 independent inversions. A forward model
based on the Thomson-Haskell matrix method is used for
creating the replica [11, 12].

3.1 Case A: Scholte wave excited by a shear source

In Case A, the five-mode dispersion curves were obtained
from an experiment conducted in the North Sea in 2007
[2], whose frequency range spans from 3 to 18 Hz. The
water depth at the experiment site was 364 m. According
to the previous inversion results, the geoacoustic model
is parameterized as five uniform-velocity layers followed
by an underlying half-space. The density and compres-
sion wave velocities are calculated by the empirical rela-
tions proposed in [13] and [14], respectively. The original
search bounds shown in Tab. 1 are used for Case A, where

h and vs refer to the thickness and shear-wave velocity,
respectively.

Table 1. Search bounds for Case A.
Layer h (m) vs (m/s)

0 (Ocean) - -
1 [0,20] [0,100]
2 [0,20] [0,100]
3 [0,20] [0,200]
4 [0,20] [0,300]
5 [0,20] [0,500]

6 (Half-space) - [0,500]

The estimated dispersion curves with the ground truth
are shown in Fig. 2, in which the black dots are the ground
truth. The blue, green, yellow, and red curves are the
estimated dispersion curves by the GA, ASSA, DE, and
DQN-framework, respectively. The gray area refers to the
distribution of the estimated dispersion curves by each in-
version method.

Figure 2. The estimated dispersion curves with the
ground truth in Case A.

The estimated shear wave velocity profiles are shown
in Fig. 3, where each sub-figure corresponds to each in-
version method. In each sub-figure, the area covered by
the gray curves refers to the distribution of the inversion
results. The purple curve is the mean value over 100 inde-
pendent inversions.

The performance analysis for Case A is shown in
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Figure 3. The estimated shear wave velocity profiles
in Case A.

Tab. 2, in which the bold fonts refer to the lowest misfit
value or running time among the candidate methods.

Table 2. Performance analysis for Case A.
GA ASSA DE DQN

h1 4.56 3.99 3.54 4.25
h2 4.79 4.37 4.98 4.27
h3 7.97 7.26 6.65 6.31
h4 9.64 9.82 8.37 8.51
h5 11.30 10.60 10.22 10.69
vs1 52.44 52.02 50.85 55.71
vs2 77.99 72.61 74.55 70.07
vs3 152.91 144.88 141.54 140.07
vs4 234.98 218.40 204.82 199.12
vs5 319.69 306.33 288.86 301.03
vs6 384.56 376.92 372.28 372.41

Misfit 41.80 31.17 28.41 31.16
Time (s) 107.51 222.14 213.74 34.44

The following phenomena are revealed based on
Fig. 2, Fig. 3, and Tab. 2:

• The estimated shear wave velocity profiles of all
methods are quite consistent with each other, es-
pecially for the shallow layers. Furthermore, the
inversion results are similar to the results reported
by Dong et al. [2], which illustrates the reliability
of our work.

• The DE attains the lowest misfit value, followed
by DQN, ASSA, and GA. However, the running
time of DQN is significantly shorter than that of
other methods, which is about three to six times
shorter. In addition, among 100 independent in-
versions, the DQN-framework gives a significantly
narrower ambiguity zone than other methods.

3.2 Case B: Scholte wave excited by the ambient noise

Case B considers another scenario that the Scholte waves
were excited by ocean ambient noise. Two-mode disper-
sion curves were extracted from Green’s functions which
were retrieved from the ocean ambient noise collected by
a permanent ocean bottom cable array in the Snorre field
of the Norwegian North Sea [3]. The frequency range of
the dispersion curves is from 0.25 to 2.5 Hz. According
to the previously published information, the water depth
was 300-350 m, and the geoacoustic model is parameter-
ized as seven uniform-velocity layers plus an underlying
half-space. The density and compression-wave velocities
are calculated by the same empirical relations used in Sec.
3.1. The original search bounds shown in Tab. 3 are used
for Case B.

Table 3. Search bounds for Case B.
Layer h (m) vs (m/s)

0 (Ocean) - -
1 [0,50] [0,500]
2 [0,100] [200,800]
3 [0,200] [200,1000]
4 [0,400] [700,1000]
5 [0,600] [800,1500]
6 [200,600] [1200,1800]
7 [0,1000] [1400,2000]

8 (Half-space) - [1000,2000]
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The estimated dispersion curves and shear wave ve-
locity profiles are shown in Fig. 4 and Fig. 5, respectively.
Their legends are the same as in Fig. 2 and Fig. 3, respec-
tively.

Figure 4. The estimated dispersion curves with the
ground truth in Case B.

The performance analysis for Case B is shown in
Tab. 4, in which the bold fonts refer to the lowest misfit
value or running time among the candidate methods.

From Fig. 4, Fig. 5, and Tab. 4, the following features
can be found:

• Unlike in Case A, the estimated dispersion curves
among the candidate methods have some devia-
tions. Specifically, each method can fit the fun-
damental mode quite well, however, only DQN-
framework can provide a relatively good estimation
of the second mode.

• The DQN-framework shows the lowest misfit
value, the shortest running time, and the nar-
rowest distribution compared with other methods,
which illustrates the effectiveness of the DQN-
framework.

3.3 Discussion

For a better understanding of the distribution among the
100 independent inversion results, Fig. 6 provides the sta-
tistical analysis of each geoacoustic parameter in Case B,
in which the red dashed curve illustrates the distribution
of the estimated parameter over 100 independent inver-
sions. The gray block and the purple line correspond to

Figure 5. The estimated shear wave velocity profiles
in Case B.

the histogram and the mean value over 100 independent
inversions. Intuitively, the distribution of the estimated
parameter corresponds to the ambiguity of the inversion
results. As shown in Fig. 6, the DQN-framework provides
a significantly narrower distribution of each geoacoustic
parameter compared to other methods, especially for the
estimations of thickness. This is consistent with the phe-
nomena found in uncertainties of the estimated dispersion
curves (Fig. 4) and geoacoustic models (Fig. 5), respec-
tively.

To sum up, the DQN-framework can conduct the in-
version with the shortest running time and narrowest am-
biguity distribution in both cases. Even though the DQN-
framework does not provide the lowest (but the second-
lowest) misfit value in Case A, we still believe that the
proposed method has impressive performance and poten-
tial for geoacoustic inversion.

4. CONCLUSIONS

In this paper, a previously published DQN-based frame-
work for geoacoustic inversion is adopted to estimate the
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Figure 6. Statistical analysis of each geoacoustic parameter in Case B.

Table 4. Performance analysis for Case B.

GA ASSA DE DQN
h1 24.71 24.72 25.07 19.73
h2 35.11 36.44 28.78 36.16
h3 69.68 65.74 59.04 64.74
h4 137.49 126.19 158.65 118.90
h5 238.86 233.62 200.02 241.40
h6 388.24 391.96 200.02 402.50
h7 453.14 470.99 431.88 473.12
vs1 331.58 351.10 344.36 300.83
vs2 555.32 556.92 555.07 552.17
vs3 796.23 806.37 772.89 796.09
vs4 900.79 882.23 914.28 883.91
vs5 1298.24 1289.88 1280.28 1278.01
vs6 1591.41 1538.42 1552.81 1531.09
vs7 1578.34 1630.48 1602.56 1653.46
vs8 1465.01 1456.16 1463.15 1437.53

Misfit 67.54 41.01 39.45 15.03
Time (s) 132.78 1104.45 936.72 119.22

shear wave velocity profile from the dispersion data of

Scholte waves. The framework is evaluated against three
optimization methods commonly used for geoacoustic in-
version based on two real cases. Based on the compre-
hensive performance analysis, it is demonstrated that the
DQN-framework performs the fastest and lowest ambigu-
ity inversions. Furthermore, the DQN-framework attains
the second-lowest misfit values in Case A and the lowest
misfit values in Case B, respectively. In conclusion, the
effectiveness and efficiency of the DQN-framework have
been validated in real cases.
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