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ABSTRACT

Recently developed high-fidelity finite element (FE) mod-
els prove to be a state-of-the-art method for a better un-
derstanding of the vibrational behavior of musical instru-
ments. However, some kinds of analyses, like optimiza-
tion or parameter identification, require numerous model
evaluations and lead to long computational times when
using the FE model. Projection-based parametric model
order reduction is a powerful tool to improve the com-
putational time of FE models while preserving the pa-
rameter dependence. Despite this, projection-based meth-
ods require the complete system matrices that are of-
ten only accessible with limitations. Consequently, the
reduced-order model produces a systematical discrepancy
compared to the original model. We present a discrep-
ancy modeling method to approximate the parameter-
dependent effect of a radiating boundary condition in an
FE model of a classical guitar that cannot be exported
from the commercial FE software Abaqus. For this pur-
pose, a projection-based reduced-order model is enhanced
by a data-driven model of the error in the approximation
of the eigenfrequencies and eigenmodes. Artificial neural
networks account for the data-driven discrepancy models.
The application of the discrepancy models obliterates 98%
of the average eigenfrequency error existing in the initial
reduced-order model without error estimation.
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1. INTRODUCTION

In recent years, the finite element method (FEM) has be-
come one of the most widely used numerical models for
studying the vibrational behavior of guitars. Recent stud-
ies have demonstrated its effectiveness [1]. Nonetheless,
certain types of analyses, such as parameter identification
or optimization, see [2], need numerous model evaluations
and result in long computational time when using FEM.

Projection-based parametric model order reduction
(PMOR) is a technique used to reduce the computational
time of FEM simulations while preserving the parameter
dependence of the model. This technique involves pro-
jecting the original high-dimensional model onto a lower-
dimensional subspace that captures the dominant features
of the model, see [3].

Projection-based methods require access to the com-
plete system matrices. When using some commercial fi-
nite element software, this can constitute a limitation. In
particular, when using the commercial finite element soft-
ware Abaqus [4] it is not possible e.g. to export the full
system matrices if the finite element model includes cer-
tain features, such as acoustic structural coupling or radi-
ating boundary conditions (BCs).

To overcome this issue, the finite element model
needs to undergo some minor adaptations before model
order reduction can be applied. The implementation of
these adaptations combined with the PMOR procedure in-
evitably leads to a systematical discrepancy between the
reduced-order model and the original one.
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This contribution, which builds on [2], aims to de-
velop a method that can obliterate the error between a
full-order model of a classical guitar and a respective
reduced-order model where some features have not been
exported. This is done by modeling the discrepancy be-
tween reduced-order and full-order models.

A data-driven model able to approximate the
parameter-dependent error term between the eigenfre-
quencies and the eigenmodes of the reduced-order and
the full-order models is developed. A recently developed
method called discrepancy modeling, or closure model-
ing, is used, which employs a deep neural network as a
closure learning framework for reduced-order systems [5].

This work deals with a combined approach between
model order reduction and artificial neural networks
(NNs). The latter have shown to accurately predict the
vibrational behavior of musical instruments [6]. By com-
bining both methods one can obtain a much more accurate
prediction than using either alone.

2. MODEL DESCRIPTION

In this section, a classical guitar finite element model is
presented, and its details are described. We will refer to it
as full-order model. Projection-based PMOR is applied to
the full-order model, producing a reduced-order, or surro-
gate model.

2.1 Full-Order Model

The geometry modeling and the finite element discretiza-
tion are realized using the commercial software Abaqus,
which allows to define the material characteristics of the
model, to impose acoustic and structural BCs, and to au-
tomatically create the mesh.

Since we do not want to study a particular instrument,
but show the feasibility of the method, we use a simplified
model of the guitar. Details about the model can be found
in [7].

The model is composed of three parts: a plane top
plate or soundboard with a sound hole; a plane back plate
with the same shape as the top plate; and the air inside the
cavity, of the shape and size of a classical guitar. The top
and back plates’ materials were chosen to be, respectively,
cedar and mahogany. Figure 1 shows the geometry of the
guitar model after the three parts have been meshed.

The fluid-structure interaction between the plates and
the air cavity is taken into account by applying a tie con-
straint between the surface of each plate with the corre-

enclosed fluid (air)

top plate (cedar)

back plate (mahogany)

Figure 1: Assembled and meshed finite element
model of a classical guitar with different sections for
the different parts.

sponding underlying surface of the air cavity. This tie con-
straint allows to couple the structural degrees of freedom
(DOFs) of the plates to the pressure DOFs of the fluid.

Instead of modeling the actual sides of the guitar, a
homogeneous Dirichlet BC is imposed on the edges of
both the top and the back plates. According to [8], the
air cavity has been modified with a length correction in
correspondence to the sound hole, as can be observed in
Figure 1. This allows to take into account the effects due
to the external air. On the surface of the sound hole, acous-
tic infinite elements are applied to simulate the sound ra-
diation in that specific location as if the surrounding en-
vironment were infinitely large. The model results in
N = 19908 total DOFs.

The woods of the guitar plates can be considered as
orthotropic materials [9], so their behavior can be charac-
terized by ten material parameters for each plate, namely,
the density ρ, three Young’s moduli EL, ET and ER, three
Poisson ratios νLT, νLR and νTR, and three shear moduli
GLT, GLR and GTR. Thus, we parameterize the finite el-
ement model with 20 material parameters i.e. 10 for each
plate. The subscripts L, T, and R denote the longitudinal,
tangential, and radial directions with respect to the wood
growth rings. The material parameters are considered ho-
mogeneous throughout the plates, as done in [10].

The nominal parameter values, taken from [11], are
listed in Table 1. The air cavity is characterized by a den-
sity ρF = 1.2 kg/m3 and a bulk modulus KF = 142 kPa.

The final system of equations of motion for the full-
order model reads

MFE(p̂)q̈ +DFE(p̂)q̇ +KFE(p̂)q = f , (1)

where MFE ∈ RN×N , DFE ∈ RN×N and KFE ∈
RN×N are the mass, damping, and stiffness matrices of
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Table 1: Nominal material parameter values for
cedar and mahogany, from [11].

ρ [kg/m3] EL [GPa] ER [GPa] ET [GPa] νLR
cedar 320 8.47 0.686 0.466 0.378
mahogany 420 10.7 1.18 0.534 0.297

νLT νRT GLR [GPa] GLT [GPa] GRT [GPa]
cedar 0.296 0.403 0.737 0.728 0.042
mahogany 0.641 0.264 0.939 0.630 0.224

the full-order model. The vector f ∈ RN represents
the external forces acting on the system, while q ∈ RN

contains the displacements of the N nodal DOFs. The
models’ parameter dependency is highlighted by the ar-
ray p̂ ∈ R20 containing the material parameters of both
plates.

It should be kept in mind that Abaqus can only eval-
uate discrete values of p̂, hence an analytical parametric
version of the system matrices does not exist. Also, when
coupling the structure and the fluid, the system matrices
are not accessible for export in Abaqus.

The eigenfrequencies and eigenmodes of the system,
as a function of the material parameters, are computed
solving the eigenvalue problem

(KFE(p̂)− ω2
mMFE(p̂))ϕm = 0, (2)

with ωm and ϕm being the m-th eigenfrequency and
eigenmode of the system, respectively.

The employment of acoustic infinite elements allows
to account for stiffness and mass contribution in the ex-
traction of the eigenfrequencies and eigenmodes, while
the damping effects are neglected [4]. However, a pre-
vious study [10] demonstrates how the employment of
acoustic infinite elements yields results consistent with ex-
perimental data.

The eigenfrequencies and eigenvectors were com-
puted with the Abaqus embedded eigenvalue solver. To
compute the first 50 eigenfrequencies and eigenmodes
with the full-order model, the computational time turns
out to be about 14 s on a workstation with an AMD Ryzen
9 5950X 16-Core Processor and 128 GB of RAM.

2.2 Surrogate Model

The full-order model undergoes a projection-based model
order reduction, obtaining as a result a surrogate model.
However, the projection-based model order reduction re-
lies on the analytical parametric version of the system ma-
trices, not available from Abaqus. Moreover, also the sys-

tem matrices at discrete parameter values are not avail-
able. Hence, a few preliminary steps are necessary.

One way to obtain accessible system matrices is to
substitute the acoustic infinite elements at the sound hole
with regular acoustic elements, to which we apply a
Dirichlet BC, i.e. a pressure of p = 0 on the entire sound
hole surface. Furthermore, the system matrices including
the acoustic structural coupling are unavailable. Thus, the
matrices of the structural and acoustical parts are exported
separately, and the fluid-structure interaction is computed
a posteriori, as described in [7]. Starting from the system
thus obtained, affinely parameter-dependent (APD) sys-
tem matrices are retrieved [2].

The resulting equations of motion, written as a
second-order input-output system, read

Mapd(p)q̈ +Dapd(p)q̇ +Kapd(p)q = Bu,

y = Cq,
(3)

where Mapd,Dapd,Kapd ∈ RN×N are the parametric
system matrices, obtained after the third step. The sys-
tem inputs u ∈ Rk are distributed on the nodal DOFs via
the input matrix B ∈ RN×k. The desired system output
points contained in the vector y ∈ Rj are retrieved via the
output matrix C ∈ Rj×N . The parameter dependency is
represented by the variable vector p ∈ R20.

The core idea of model order reduction is to obtain a
reduced vector of DOFs qr ∈ Rn from which it is possi-
ble to retrieve a very good approximation of the full-order
solution q by back-projecting it using a projection matrix
V ∈ RN×n. This means that

q ≈ V qr (4)

must hold for n ≪ N . By substituting Equation (4) into
Equation (3), we obtain

Mapd(p)V q̈r +Dapd(p)V q̇r

+Kapd(p)V qr = Bu+ ϵ,
(5)

where the term ϵ ∈ RN represents the residual from the
approximation. It is possible to get rid of this term by left-
multiplying the system of equations with the transpose of
another projection matrix W ∈ RN×n, where the rows
of WT are orthogonal to the residual term ϵ, such that
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WTϵ = 0. The resulting system reads

WTMapd(p)V︸ ︷︷ ︸
M r(p)

q̈r+WTDapd(p)V︸ ︷︷ ︸
Dr(p)

q̇r

+WTKapd(p)V︸ ︷︷ ︸
Kr(p)

qr = WTB︸ ︷︷ ︸
Br

u+WTϵ︸ ︷︷ ︸
0

,

yr = CV︸︷︷︸
Cr

qr. (6)

The matrices M r ∈ Rn×n, Dr ∈ Rn×n, Kr ∈ Rn×n,
Br ∈ Rn×k and Cr ∈ Rj×n represent the reduced-order
mass, damping, stiffness, input, and output matrices.

The identification of appropriate bases V and WT

with n ≪ N is needed such that the original system is
well approximated. A worthwhile choice is to find appro-
priate bases with the so-called moment-matching meth-
ods [12]. For a detailed description of the method used
to compute the projection matrices and the order n of the
reduced system please refer to [2].

All of the previously described steps imply a further
approximation from the full-order model we start with,
meaning that the discrepancy between the final surrogate
model and the full-order model will be caused by the
piling-up of the errors of each approximation step.

A surrogate model is computed, which only keeps
six material parameter variables, namely three for each
plate. We chose the density ρ and the longitudinal Young’s
modulus EL as they have a high influence on the eigen-
modes [2], and one with lower influence, i.e. longitudinal-
tangential shear modulus GLT. The other parameters are
fixed to their nominal values. The final reduced-order
system has n = 2471 DOFs, which is a number signifi-
cantly smaller than the N = 19908 DOFs of the full-order
model.

The eigenfrequencies ωr,m and eigenmodes ϕr,m of
the reduced-order model are found solving the eigenvalue
problem

(Kr(p)− ω2
r,mM r(p))ϕr,m = 0. (7)

On the same workstation mentioned in the previous sec-
tion, the computational time for the first 50 eigenfrequen-
cies and eigenmodes turns out to be about 1.7 s, which is
more than eight times faster than the computation for the
full-order model.

3. DISCREPANCY MODELING

In this section, a data-based approach to learn the dis-
crepancy between the full-order and the surrogate models
in the eigenfrequencies and eigenmodes is proposed. In
what follows, two distinct discrepancy models are devel-
oped based on NNs: one for the eigenfrequencies and one
for the eigenmodes.

To train the NNs, we generate a dataset by solving
the eigenvalue problems (2) and (7) for 1000 different pa-
rameter configurations, computing the first 50 eigenfre-
quencies and eigenmodes. The configurations have been
computed using a quasi-random Sobol sequence bounded
between ±30% of the nominal values. The hyperparam-
eters of the two networks have been tuned independently,
based on a random hyperparameter search, using the mean
squared error on the dataset as performance criteria.

3.1 Eigenfrequencies Correction

The parameter-dependent difference between the eigen-
frequencies of the two models is written as

gm(p) = ωm(p)− ωr,m(p), (8)

and a function g̃m(p) is searched, for each mode m, that
approximates the parameter dependent eigenfrequency er-
ror gm(p). This allows to compute an approximation of
the eigenfrequencies of the reduced-order model as

ω̃m(p) = ωr,m(p) + g̃m(p) ≈ ωm(p). (9)

In order to model g̃m, we use a fully-connected multi-
layer perceptron with two hidden layers of dimension R10,
the input layer containing the parameter vector p ∈ R6

and the output layer containing the approximated eigen-
frequency error g̃m ∈ R. The activation function of the
inner layers of the proposed network is a Rectified Lin-
ear Unit function, while the output layer has a linear ac-
tivation function. The back propagation during the train-
ing is implemented through a Broyden-Fletcher-Goldfarb-
Shanno quasi-Newton algorithm. One NN is trained for
each mode m over the training set. The training finishes
after 1000 iterations to avoid overfitting. Eighty percent
of the data is used for training the networks, while the re-
maining twenty percent is provisioned as test set.

Finally, we want to compare the performance of the
proposed method with the sole employment of NN to pre-
dict the parameter-dependent eigenfrequencies. To do so,
we train a NN with the same structure as the one previ-
ously described, where the output layer contains ωm.
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3.2 Eigenmodes Correction

We consider the eigenmodes error term as

∆µ = ϕ̄µ(p)− ϕ̄r,µ(p), (10)

where ϕ̄µ and ϕ̄r,µ represent the µ-th normalized eigen-
modes. Our aim, now, is to find a parameter-dependent
function ∆̃µ(p) that approximates the discrepancy be-
tween the eigenmodes, in order to compute a corrected
version of the reduced-order eigenmodes, as

ϕ̃µ(p) = ϕ̄r,µ(p) + ∆̃µ(p) ≈ ϕ̄µ(p). (11)

3.2.1 Particle Swarm Optimization

Long computational time can incur when training a NN if
we consider all the structural nodal displacements of the
modeshapes. Thus, a criterion to choose a subset of nodal
displacements upon which to compare the modeshapes of
the models is needed. To do this, we need to determine
a number D of nodal displacements which adequately ap-
proximate the relationship between the modeshapes of the
full-order and the reduced-order model. We will consider
the surface node displacements only (displacement in the
direction normal to the plates of the guitar) since these are
more accessible for possible experimental measurements.
The modeshapes are compared using the Modal Assur-
ance Criterion (MAC) [13].

We search for the minimum error between the di-
agonals of two different MAC matrices: the first is the
MAC between the modeshapes of the two models com-
puted on all the structural nodal displacements; while for
the second we only consider the surface displacement of
D nodes. To find an optimal set of nodes, we use an opti-
mization algorithm based on Particle Swarm Optimization
(PSO). The basic idea of PSO is to represent candidate
designs to an optimization problem as particles that move
through a search space. For further details about the algo-
rithm, please refer to [14].

In our specific case, the search space corresponds to
the array containing all the surface nodes. The positions
of the particles correspond to D indices of the aforemen-
tioned array. The position and the velocity of the particles
are updated following the goal of minimizing a given ob-
jective function J(x), which will be computed for each
time step, where x is the array containing the position of
all the particles. The objective function

J(x) =

√√√√ 50∑
µ=1

∣∣∣∣MACµµ −MAC(x)µµ
MACµµ

∣∣∣∣2 (12)

is proposed, where MACµµ represents the diagonal ele-
ments of the MAC matrix considering all the structural
DOFs, and MAC(x)µµ represents the MAC matrix con-
sidering the D surface node displacements at position x.

We performed the computation considering the mode-
shapes of the full-order and surrogate model with the ma-
terial parameter fixed to their nominal values. We perform
the computation on different numbers of points, in a range
between 100 and 200, and we choose the solution with the
lower value of the objective function, i.e. D = 160. The
position of the nodes, found from the PSO on the top and
back plate, is shown in Figure 2.

Figure 2: Position of the nodes on top and back
found through the Particle Swarm Optimization al-
gorithm. These nodes are used for comparing the
modeshapes

3.2.2 Dictionary of Modeshapes

The eigenmodes change continuously with the parame-
ters, and moreover, they appear and disappear in certain
parameter ranges. Therefore, we need a method to clas-
sify the modeshapes, investigating which regions of the
parameter space they appear. To achieve this, we built a
so-called dictionary of modeshapes. All the modeshapes
of the dataset are compared using the MAC, and they are
clustered in groups of similar modeshapes. The dictionary
items are initialized with the modeshapes sequence with
parameters fixed to their nominal values. All the mode-
shapes of the dataset are compared, one by one, to the
items of the dictionary. If MAC>0.8, the modeshape and
its correspondent parameter configuration are stored. If
not, a new record is created and the modeshape is added
to the new item. Each record constitutes a category to
which a modeshape can belong. Using this approach,
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our aim now is to learn a regression model for each dic-
tionary item, and not for each mode number as we did
for the eigenfrequencies. Thus, the symbol µ in Equa-
tions (10) and (11) does not represent the mode number,
as for the eigenfrequencies, but it represents the dictionary
item number.

3.2.3 Network Architecture

As a learning method, a feedforward NN has been used.
The input layer of the network has dimension R6 and
contains the parameter array p. Four hidden layers are
present. The first two have dimension R20, while the last
two have dimension R160. The output layer contains the
approximated error for one dictionary item, of dimension
R160. Each neuron of the first three hidden layers is char-
acterized by a hyperbolic tangent transfer function. The
neurons of the last hidden layer are characterized by a lin-
ear transfer function.

The first three hidden layers of the NN are fully con-
nected. Between the two large hidden layers of dimen-
sion R160, the weights will not be learned. Instead, they
are predefined in a neighborhood relation that can be
written in matrix form with the entries wji(xj ,xi) =

0.9
(
1 − ||xj−xi||2

δ

)
+ 0.1, if ||xj − xi||2 ≤ δ, where

||xj−xi||2 is the Euclidean distance between coordinates
of two nodes xi and xj of the mesh, and δ = 5 cm rep-
resents the threshold distance. Nodes within the threshold
distance from each other receive weights that increase lin-
early from 0.1 to 1 as the Euclidean distance between them
decreases. Nodes outside the threshold distance will have
weight wji(xj ,xi) = 0. The use of predefined weights
grants a significant reduction in training time.

We train one NN for each dictionary item using the
Levenberg-Marquardt backpropagation algorithm. In con-
trast to the NN employed for the eigenfrequencies, this al-
gorithm has been chosen because of the larger NN size,
due to its fast convergence feature [15].

The layer weights are initialized randomly, and the
training finishes after 100 iterations. All the training runs
converged and their error plateaued. Eighty percent of the
data is used for training the networks, while the remaining
twenty percent is used as test set.

4. RESULTS

On the test set, the discrepancy modeling correction to the
eigenfrequencies is computed using Equation (9). We cal-

culate the relative eigenfrequency error εm as

εm =
ωm − ω∗

ωm
, (13)

where ω∗ = ωr,m in case no correction is applied, or
ω∗ = ω̃m if the eigenfrequencies of the surrogate model
are corrected via discrepancy modeling, using the NNs we
introduced in Section 3.1.

The results are illustrated using box plots. Each box
contains the data between the 25th and the 75th percentile,
with a central mark representing the median. The lines
going out from the edge of the box, the so-called whiskers,
extend to a distance that is 1.5 the interquartile range, i.e.
the width of the box. Points lying at a greater distance
are considered outliers, which are represented as scattered
points.

Figure 3(a) shows the box plots of the relative eigen-
frequency error for the first 10 modes, both before and
after the eigenfrequency correction. The results after the
correction from the prediction show a significant improve-
ment. After the correction, the relative error for the con-
sidered eigenfrequencies is bounded −0.65% < ε <
0.65%, with an average value of 0.053%. Since the av-
erage value of the eigenfrequencies relative error before
the correction is 2.88%, the discrepancy modeling is able
to erase 98% of the average error. The eigenfrequencies
of the reduced-order model have a systematically lower
value than the ones of the full-order model, and the dis-
crepancy modeling method here proposed is able to shift
the median value to zero, reducing the variance as well.
The relative error of the first eigenfrequency before the
correction is by far the largest, with an average value of
−21.35%. After the correction, it decreases to 0.0043%.
The modes 7 to 10, before the correction, have an absolute
relative error of less than 0.1%, which can be considered
sufficiently low already. Regardless, after the correction
via discrepancy modeling, it is further reduced.

The performance is compared with the results from
the method employing the sole NN described in Sec-
tion 3.1. Assessing the NN on the test set, we find that
the average relative error over the first 10 eigenfrequen-
cies is 1.19%. The method combining PMOR and NN
can produce results that are over 20 times more accurate.

The performance assessment of the modeshape dis-
crepancy modeling is not straightforward. Therefore, Fig-
ure 4 shows a visual example of a modeshape correc-
tion, for the 9th dictionary eigenmode of a specific pa-
rameter configuration p̂. In this example, it is visible
how the formerly erroneous modeshape from the reduced-
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Figure 3: Box plots representing (a) the relative eigenfrequency errors for the first 10 modes, both before (up)
and after (down) the discrepancy model correction, and (b) the MAC values between full-order and surrogate
model, before (up) and after (down) the discrepancy model correction, for the first 10 dictionary modes.

φ̄r,9(p̂) ∆̃9(p̂) φ̃9(p̂) φ̄9(p̂)

reduced-order model discrepancy model full-order model

Figure 4: Visual example of modeshape correction for the 9th dictionary eigenmode of a specific parameter
configuration p̂.

order model is corrected through the discrepancy model,
to form a final modeshape which is, then, much more sim-
ilar to the full-order model’s modeshape. The MAC value
increases from 0.94 before the correction to 0.99 after the
correction.

Figure 3(b) shows the distribution of the MAC val-
ues between the full-order and reduced-order model, both
before and after the discrepancy model correction for the
first 10 dictionary modes computed on the test set. The
data are shown as box plots. The modeshapes of the dic-
tionary items 6, 7, 9 and 10 are already well approximated,
with an average MAC> 0.99, so the discrepancy model
correction does not bring a significant improvement. In-
deed, for items 6, 7 and 10 the corrected model is even
slightly worse with a higher number of outliers. For all
the other dictionary items, where the distribution of the

MAC value was not already concentrated around one, the
correction results bring an overall improvement. After the
correction, their average value is 1.00 for items 1 to 5 and
0.95 for item 8. Their variance is reduced by 17% on av-
erage.

5. CONCLUSIONS

We developed a data-driven method for an enhanced
reduced-order model of a classical guitar by modeling
the discrepancy between the full-order and reduced-order
models. We found that this discrepancy modeling sig-
nificantly reduced the error for the first 50 eigenfrequen-
cies, especially beneficial for the lower order modes that
are crucial for the guitar’s sound characterization [16]. It
offers a substantial improvement to the surrogate model
without any noticeable downside.
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However, when applied to eigenmodes, the method
did not yield a universal improvement but rather benefited
certain modeshapes. Therefore, discretion is advised in its
application, considering the specific modeshapes to apply
it to. Despite its effectiveness, there’s room for further re-
finement, potentially through an improved dictionary as-
sembly procedure that could employ a classification learn-
ing model for assembling the clusters.

In this work, we choose to apply the discrepancy mod-
eling on the parameter-dependent eigenfrequencies and
eigenmodes of the full-order and surrogate models. Yet
a different way of proceeding could be to apply the dis-
crepancy modeling method directly to the models’ mass
and stiffness matrices, with the purpose of learning the
missing terms in the affine parametric matrices.

We wish to extend the application of our method to a
fully-detailed finite element guitar model, as the one de-
veloped in [10]. This would result in better-approximated
efficient models, which might enhance the knowledge
about existing instruments.
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