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ABSTRACT* 

The convergence speed of broadband multichannel adaptive 
active noise algorithms can be improved if the updating of 
the time domain control filter is performed in the frequency 
domain, normalising the power of the reference signals and 
compensating for the response of the plant. Although the 
updates are performed one block at a time, no additional 
delay is then introduced in the processing of the reference 
signals and the convergence time and the computational load 
can be reduced compared with time domain adaptation when 
there are many correlated reference signals, such as in the 
active control of road noise in vehicles. One method of 
implementing virtual sensors is to use the auxiliary filter 
method, which provides targets for the measured error 
signals to follow, generated from the reference signals. The 
performance of this virtual sensing algorithm is known to be 
degraded if the properties of the reference signals change, 
however. It may still be possible to approximate the 
properties of the measured reference signals using a limited 
number of exemplar cases. By classifying the measured 
reference signals into the closest of these cases, the most 
appropriate auxiliary filter could then be selected for the 
adaptive algorithm at any one particular time.  

Keywords: active control, virtual sensing, selective anc.  

1. INTRODUCTION 

The convergence rate of multichannel broadband adaptive 
control systems is limited by the spectral spread of the 
individual reference signals and by the correlations between 
them [1]. One way that has been suggested for improving the 
convergence rate is to precondition the reference signals, x, 
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with a matrix of filters P, to provide a set of modified 
reference signals, v, that are more white and less correlated 
than x, as shown in Figure 1, in which W is the matrix of 
adaptive feedforward control filters and G is the matrix of 
plant responses between the secondary sources and the 
physical error sensors, with outputs e. 
 

 
 
Figure 1. Block diagram of an adaptive feedforward control 
system having both preconditioning of the references signals, 
P, and using an auxiliary filter, A, for virtual sensing, with 
both of these filters selected according to the properties of the 
reference signals, as estimated with the classifier. 
 
It is assumed that a filtered-error adaptive algorithm is used, 
where 𝑮𝑮�𝐻𝐻is the Hermitian transpose of the estimated plant 
response matrix, although the delays associated with 
ensuring the causality of this are omitted for clarity. Also 
shown in Figure 1 is the auxiliary filter, A also called the 
additional filter, which is used for virtual sensing so that the 
control filter is adapted to minimise the difference between 
the measured signals at the physical error sensors and the 

Attribution 3.0 Unported License, which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original 
author and source are credited. 

DOI: 10.61782/fa.2023.0153

3607



10th Convention of the European Acoustics Association 
Turin, Italy • 11th – 15th September 2023 • Politecnico di Torino 

 

 

signals at these sensors when the outputs of a number of 
remote virtual error sensors is minimised [2]. It is known that 
the auxiliary filter method of virtual sensing is less sensitive 
to perturbations in the plant response that the remote 
microphone method, but is more sensitive to changes in the 
statistical properties of the reference signals [3,4]. The 
characteristics of both the preconditioning filter, P and the 
auxiliary virtual sensing filter, A are thus dependent on the 
statistical properties of the reference signals, which in 
general may change over time. For this reason, both of these 
filters could be scheduled on the measured characteristics of 
the reference signals, as estimated by a classifier, as also 
shown in Figure 1, in a form of selective active control [5,6].   
In the remainder of this paper, simulations of reference signal 
preconditioning are presented using a database of road noise 
signals measured on an electric vehicle [7]. It is shown that 
even under apparently very stationary conditions, 
preconditioning degrades the performance of the adaptive 
algorithm if it is based on the long-term properties of the 
reference signals. A more successful form of preconditioning 
uses the short-term properties of the reference signals, 
particularly if this is based on the window size of a frequency 
domain implementation. Unfortunately, the dataset in [7] 
does not include virtual error signals, so that the performance 
of the auxiliary filter method could not be tested using these 
measurements.  

2. SIMULATIONS 

An important application of multichannel broadband active 
noise control is the reduction of road noise in cars [8]. The 
dataset of road noise signals provided by Yang et al. [7] 
includes 20 minutes of sampled time histories for the 
reference signals obtained from 16 accelerometers on an 
electric car and the disturbance signals measured at 2 error 
microphones at the ears of a dummy head, sampled at 4 kHz, 
for 5 different road speeds. Also provided are the drive 
signals to two headrest loudspeakers and the corresponding 
response at the error microphones, from which the matrix of 
plant responses can be estimated.  
Figure 2 shows the long-term power spectral density, PSD, 
of a representative reference signal, recorded at a road speed 
of 50 kph, and its spectrogram over the 20 seconds of this 
dataset, indicating that these signals have a large spectral 
range but appear to be very stationary. 

  
 
Figure 2 The long-term power spectral density, PSD, of a 
representative reference signal from [7] and its spectrogram 
over 20 minutes. 
 

 
Figure 3 The PSD and CSD of three reference signals from 
[7], at five different road speeds. 
 
 
 Figure 3 shows the power spectral densities, PSD, diagonal 
plots, of three representative reference signals in [7] and the 
cross spectral density, CSD, off-diagonal plots, between 
these signals, showing that these signals are strongly 
correlated. Above about 500 Hz their levels rise by about 
10dB as the road speed increases from 50 kph to 80 kph, but 
then remain reasonably constant from 80 kph to 120 kph. The 
dataset at 50 kph have been used to simulate the convergence 
characteristics of various adaptive feedforward control 
algorithms in minimizing the sum of the square outputs at the 
two microphones using both secondary loudspeakers. 
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Figure 4. The time histories of the mean square error signals 
using the FxLMS algorithm, the preconditioned filtered error 
algorithm, P-FeLMS, and the bin-normalised frequency 
domain LMS algorithm, NFDLMS 
 
The time histories of the attenuation in the sum of squared, 
smoothed and A-weighted error signals are shown in Figure 
4 when the FxLMS control algorithm is simulated. About 
6dB of attenuation is achieved after 10 seconds, but it then 
takes about 700 seconds to achieve the full 11 dB of 
attenuation, in agreement with the results presented in [7], 
demonstrating the slow convergence of some modes in this 
case [1]. The convergence behaviour is similar if the FxLMS 
algorithm is simulated in the frequency domain with a 
window length, N, of 512 samples, or if the filtered error 
algorithm is simulated in the frequency domain.  
 

 
 
Figure 5. Frequency domain implementation of the bin-
normalised filtered error LMS algorithm 
 
Figure 4 also shows the convergence behaviour of the 
preconditioned algorithm, where the preconditioning filter, P 
in Figure 1, was implemented in the frequency domain and 
calculated from the singular value decomposition of the 
spectral density matrix of the reference signals [9], calculated 
over the whole 1200 seconds of the data record. It is clear 

that the attenuation is less than with the FxLMS algorithm in 
this case. This degradation was found not to be due to the 
preconditioning filter calculated in this manner not being 
strictly causal, but to the fact that the long-term spectral 
density matrix does not accurately describe the statistical 
properties of the reference signals over time. The 
performance of the frequency domain algorithm is more 
severely degraded, however, if the singular value 
decomposition is used to approximate, in a non-causal way, 
the all-pass and minimum phase components of the plant 
response [9]. 
Finally, in Figure 4 is shown the attenuation of the frequency 
domain algorithm shown in Figure 5, in which the 
convergence coefficient is normalised in each frequency bin 
by the sum of the magnitude squared reference signals in that 
bin. In this case, the control filter is implemented in the time 
domain to limit delays, but the adaptation is implemented in 
the frequency domain [10,11]. The convergence rate and the 
final attenuation are slightly improved in this case. The 
frequency domain implementation is also about a factor of 
14 times more computationally efficient than a purely time 
domain implementation of the control algorithm.  
 
In order to investigate different timescales of averaging in the 
adaptation, a form of recursive least square, RLS, algorithm 
was also implemented [12], in which the preconditioning 
matrix is the iteratively estimated inverse of the reference 
signal’s spectral density matrix. An estimate of this spectral 
density matrix at each frequency, k, and for data block m, 
𝑺𝑺�𝑚𝑚(𝑘𝑘), was calculated using: 
 
𝑺𝑺�𝑚𝑚(𝑘𝑘) = 𝜆𝜆𝑺𝑺�𝑚𝑚−1(𝑘𝑘) + 𝑿𝑿𝑚𝑚(𝑘𝑘)𝑿𝑿𝑚𝑚𝐻𝐻 (𝑘𝑘),                             (1) 
 
where 𝜆𝜆 is a forgetting factor.  
 

 
 
Figure 6. Frequency-averaged mean square error after 
convergence of the RLS algorithm as a function of the 
forgetting factor, 𝜆𝜆. 
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The frequency-averaged mean square error after 
convergence is plotted in Figure 6 as a function of the 
forgetting factor. Setting λ=1 is very similar to the 
preconditioned algorithm above, which uses the whole 
dataset to calculate the spectral density matrix. When 𝜆𝜆 = 0, 
corresponding to no averaging, the algorithm is equivalent to 
the bin-normalised algorithm whose results are shown in 
Figure 4. The minimum value of the mean square error is 
achieved for 𝜆𝜆 = 0.7, corresponding to exponentially 
averaging the spectral density matrix with a time constant of 
about 1/3 second. The mean square error is, however, then 
only about 0.2 dB lower than the value when λ=0. 
Implementing the RLS algorithm is more computationally 
demanding than the bin-normalised algorithm, so that 
algorithm appears to be a good trade-off between 
performance and computational cost. 

3. CONCLUSIONS 

In principle there are advantages to preconditioning the 
reference signals in a multichannel feedforward control 
system, using their long-term spectral properties. In 
simulations using road noise data, from an electric car 
travelling at a constant speed on a uniform road, however, 
the performance of this algorithm is worse than using the 
instantaneous adaptation of the standard FxLMS algorithm. 
It would appear that even slight non-stationarity in the 
reference signals reduces the advantages of preconditioning 
using the long-term properties. Slightly faster convergence 
than the FxLMS algorithm is obtained if a bin-normalised 
frequency domain version of the filtered error LMS 
algorithm is used, and this also has the advantage of a 
considerably lower computational cost. Both the long-term 
preconditioned and the bin normalised filtered error LMS 
can be viewed as limiting cases in a form of RLS algorithm, 
by changing the forgetting factor. This provides a systematic 
method of determining the optimum timescale for averaging  
the spectral density matrix in a given application.   
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