
10th Convention of the European Acoustics Association
Turin, Italy • 11th – 15th September 2023 • Politecnico di Torino

TIME-DEPENDENT DYNAMICAL ENERGY ANALYSIS VIA
CONVOLUTION QUADRATURE

David Chappell∗
Department of Physics and Mathematics, Nottingham Trent University, UK

ABSTRACT

Dynamical Energy Analysis (DEA) was introduced in
2009 as a novel method for predicting high-frequency
acoustic and vibrational energy distributions. The Convo-
lution Quadrature (CQ) method provides a link between
the frequency domain and fully time-dependent solutions
by means of the Z-transform when the time-dependent
solution can be expressed as a convolution in time. In
this work we detail how DEA can be formulated in the
time domain by means of a convolution integral operator
and apply the CQ method to discretise in time. The space
and momentum variables may be approximated using the
same approaches that have previously been implemented
in frequency domain DEA. The final result is a fully time-
dependent DEA method that can track the propagation of
high-frequency transient signals through phase-space.
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1. INTRODUCTION

Boundary integral methods for modelling time-dependent
wave propagation were originally proposed in the 1960s
[1, 2]. The considerable increase in available computer
power during the latter part of the twentieth century made
numerical solutions over longer time intervals feasible,
and with this advance long-time instabilities in the nu-
merical solutions also became evident [3–5]. The cause
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of these instabilities has been linked to internal reso-
nances of the wave scatterer for exterior problems [4],
or the region being modelled for interior problems. For
this reason, combined field integral equations, such as
the time-dependent Burton and Miller formulation, have
been proposed to tackle these stability issues [6, 7]. How-
ever, these formulations introduce additional computa-
tional overheads and the need to evaluate hypersingular
boundary integral operators. An alternative is to apply the
CQ method, see for example Refs. [8–10], which is able
to provide stable results based on standard integral equa-
tion formulations. The reason for the preferable stability
properties of CQ essentially relate to the reconstruction of
the time domain solution, or alternatively the time domain
boundary integral operator, through a numerical inverse
Laplace transform where the contour is taken over Laplace
domain frequencies with strictly positive real part. Since
the resonances lie on the imaginary axis in the Laplace do-
main, then they do not effect the result in the time domain.

For high-frequency time-dependent wave problems,
such as those arising in the interior acoustics of large
spaces like concert halls, ray-tracing methods are often
preferred to full wave models, see for example [11]. Tra-
ditional ray based methods work well for applications
where only a few reflections need to be considered, but
not so well for problems including multiple scattering and
chaotic dynamics. In this case, multiple reflections of the
rays can give an exponentially growing number of tra-
jectories to track. Dynamical Energy Analysis (DEA)
is a phase-space boundary integral method that models
wave energy densities [12]. DEA is a frequency domain
method formed by seeking solutions of the stationary Li-
ouville equation, circumventing issues regarding the ex-
ponentially growing number of rays to track as time in-
creases [13].

Time-domain simulations are important for vari-
ous applications such as predicting radar cross sections,
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shock-responses and, of course, auralisation. In this pro-
ceedings paper we outline a methodology for extending
DEA to the time-domain based on the CQ method. The
computational cost of time-domain DEA should scale
only linearly with the modelled time period regardless
of the ray dynamics, comparing favourably with conven-
tional ray-tracers.

2. OUTLINE OF METHODOLOGY

In order to develop a time dependent DEA method for a
domain Ω containing an acoustic medium with speed of
sound c, the first step is to reformulate the DEA phase-
space boundary integral operator to have explicit time de-
pendence. The result is a one-sided convolution (in time
t) operator B given by

(Bρ0)(t, s, p) =

∫
c|p′|≤1

∫
Γ

(k ∗ ρ0)(t, s′, p′) dΓ(s′)dp′,

(1)
which is applied to a specified initial density distribu-
tion of rays ρ0 on the boundary Γ. Here k is the time-
dependent kernel of our boundary integral operator, which
is given by a multidimensional Dirac delta generalised
function specifying the propagation of a ray through time,
position and momentum. The variables (s′, p′) relate re-
spectively to the position and momentum of the starting
position of a ray emanating from Γ and (s, p) correspond
to the arrival position and momentum on Γ, respectively,
following a specular reflection. Note that a damping factor
must be applied to obtain convergence in frequency do-
main DEA, but this is not necessary in the time-dependent
formulation owing to the fact that we only model a finite
time duration [0, T ].

The CQ method can be applied for the time dis-
cretisation of one-sided convolution operators such as B
(1), see for example [8–10]. After applying the time-
discretisation, to obtain a fully discrete problem we then
need to discretise in the position and momentum variables.
Here we may use any of the discretisation methods previ-
ously applied for frequency domain DEA amongst others,
see for example [12–14].

3. CONCLUSIONS AND FUTURE WORK

In this short paper we have motivated and outlined
a methodology to extend the DEA method for time-
dependent problems. We will present numerical results
based on this work at the conference. For these results
we will apply the position and momentum discretisation

methods from Ref. [14], since this allows for a verifica-
tion of the time discretisation method in simple examples
for which we can derive an exact solution. We will use
these examples to study whether the order of convergence
in time is consistent with the expected behaviour of the
applied time-stepping approach. We will also present ex-
amples for which this choice of position and momentum
discretisation is less favourable and it may be preferable
to use the methods in Ref. [13], for example, instead.
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