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ABSTRACT* 

The EN12354 building acoustics prediction standards are 
based on the statistical energy analysis (SEA) method. In a 
traditional SEA path analysis, lightweight or heavyweight 
materials have different principal paths that determine the 
sound insulation for the specified building acoustics 
frequency range (50Hz-5000Hz). Different building 
materials require different applications of the engineering 
method (EN12354) to determine in-situ sound insulation 
with flanking. A hybrid method, such as the (finite element 
method) FEM-SEA hybrid approach, offers an alternative 
theoretical framework to predict in situ sound insulation with 
the capacity to combine vastly different methods. In a hybrid 
model, different power flow contributions (due to the 
deterministic and direct-field energies) are naturally 
separated into different matrices. This work investigates the 
feasibility of using a hybrid model to predict sound 
insulation. The hybrid method is applied to three different 
materials. These models are compared against traditional 
SEA and infinite plate models. 

Keywords: sound insulation (SI), hybrid model, building 
acoustics. 

1. INTRODUCTION 

Statistical energy analysis (SEA) is a well-known method to 
calculate the sound insulation of different materials. It is the 
basis upon which the EN12354 building acoustics prediction 
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standards are written. This work investigates the feasibility 
of using an alternative theoretical framework, the hybrid 
model, to calculate coupling loss factors and predict sound 
insulation. In this work we compare a hybrid approach 
against calculations made using traditional SEA and infinite 
plate models. Three different material models are 
investigated. Section 2 describes the plate specifications and 
the room properties The coupling loss factors calculated 
using a hybrid approach are compared with a traditional SEA 
method. The sound insulation is also calculated using 
traditional SEA and infinite plate models and compared with 
the results from the hybrid method. These methods are 
described in section 3. Finally, sections 4 and 5 present the 
results and conclusion of the early study. 

2. DESCRIPTION OF THE MODEL 

2.1 Model overview 

 

Figure 1. Two acoustic volumes separated by a flat 
plate [1]. 
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The model comprises three subsystems; two acoustic 
volumes are separated by a flat plate (see Fig. 1). The 
acoustic volumes are modelled as two acoustic half spaces 
and the plate is modelled using both infinite plate and 
analytic techniques. A direct field approach is used to 
model the infinite pate and a modal model of a plate with 
simply supported edges is used to model the deterministic 
plate system. These methods are combined to give the 
coupling loss factors and hence the sound insulation of the 
system. 

2.2 Plate specifications 

Table 1. Plate properties. 

 CLT Steel Perspex 

Elastic 
modulus 
(Nm-1) 

1.58×109 2.10×1011 5.6×109 

Poisson ratio 0.3 0.3 0.3 
Dimensions 
(m2) 

3.6×3.6 0.5×0.5 0.91×0.91 

Surface 
density 
(kgm-3) 

37.9 39.3 11.6 

Thickness 
(m) 

0.12 0.005 0.0098 

Internal loss 
factor (-) 

0.01 0.01 0.02 

 
The study examples are three square plates (small to large). 
The properties of the plates are listed in table 1. The steel 
plate is also modelled in [1]. 

2.3 Room specifications 

The rooms are assumed to be air filled with typical gas 
constants for air at room temperature (see table 2). For the 
infinite plate models, the plate and room dimensions are not 
considered. In the SEA model the calculation for the cross 
laminated timber (CLT) was performed with typical room 
volumes for dwellings with large rooms (59.4 m3 and 54.0 
m3); the steel with typical room volumes for dwellings with 
very small rooms (both 10.0 m3); and the Perspex has typical 
room volumes for dwellings with small and large rooms 
(27.0 m3 and 54.0 m3). In the hybrid model the source and 
receiving rooms were assumed to be the same volume both 
10.0 m3. To simplify the comparison with the hybrid model 
in all of the calculations the rooms are described by a loss 
factor that does not vary over the frequency range; this can 
be calculated from the reverberation time of the rooms. The 

value 0.01 is typical of a reverberation time of 0.44s at 500 
Hz. Note in real world applications it is usually only possible 
to measure the total loss factor of a room or cavity. 

Table 2. Room properties. 

 Room A Room B 
Gas Density (kgm-3) 1.205 1.205 
Speed of sound (ms-1) 343 343 
Loss factor (-) 0.01 0.01 

3. METHOD 

The loss factors were determined using the hybrid method 
and, for comparison, a traditional SEA method. In all models 
the material is assumed to be isotropic, and the plates are 
square with equidistant grid spacing. The minimum mesh 
requirements for all dynamic stiffness matrices were 
calculated and the highest minimum mesh requirement used 
to perform the calculation at each frequency. A variable 
mesh density that increased with increasing frequency was 
implemented to work around speed and memory constraints.  

3.1 Loss factors determined by the hybrid method 

3.1.1 No deterministic system (i.e. Dp=0) 

The coupling loss factors using the hybrid method were 
determined by [1, 2, 3]: 
 

𝜂 =
2

𝜔𝜋𝑛
Im{𝐃 ,

( )
}

,

(𝐃 Im{𝐃
( )

}𝐃 ∗ ) ,  (1) 

 
Where nj is the modal density of subsystem j, D(j)

dir,rs is the (r, 
s) term of the direct field dynamic stiffness matrix of 
subsystem j, and D(k)

dir is the direct field dynamic stiffness 
matrix of subsystem k, the subscripts r and s indicate the (r, 
s) term and Dtot is given by 
 

𝐃 =  𝐃
( )

=  𝐃
( )

+ 𝐃
( )

+ 𝐃
( ) (2) 

 
Dd,rs= 0 therefore: 
  

𝜔𝜂 , = 0 (3) 
 
and there is no deterministic system so: 
 

P , = 0 (4) 
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3.1.2 Using the driving point dynamic stiffness for the 
deterministic system (i.e. Dd=Dpoint) 

The coupling loss factors are determined by Eqn. (1) but 
in this case [1]. 
 

𝐃 = 𝐃 +  𝐃
( ) (5) 

 
In this approach the ensemble average of the deterministic 
dynamic stiffness matrix is given by the driving point 
dynamic stiffness of a plate. 
  

𝐸[𝐃 ] =  𝐃  (6) 
 
At the edges of the plate this is: 
 

𝐷 , = 𝑖𝜔 𝐵𝜌ℎ (7) 
 
Where ω is the angular frequency, B is the bending 
stiffness of the plate, ρ is the plate density, and h is the 
plate thickness. In the middle of a plate the driving point 
dynamic stiffness is: 
 

𝐷 , = 8𝑖𝜔 𝐵𝜌ℎ (8) 
 
There is no power directly input to the plate therefore Eqn. 
(4) is also applied. 

3.1.3 Using a deterministic dynamic stiffness (Dd) 

The coupling loss factors are determined by Eqns. (1) and 
(5) but in this approach the deterministic dynamic 
stiffness matrix is given by the matrix inverse of the sum 
of the modal contributions. 
  

𝐃 =  𝐇𝒅
𝟏 (9) 

 
The terms of Hd are given by [4]: 
 

𝐻 , =
4

𝜌ℎ𝑎

sin
𝑛𝜋𝑥

𝑎
sin

𝑚𝜋𝑦
𝑎

𝜔 (1 + 𝑖𝜂 ) − 𝜔
 (10) 

 
Where a is the size of the square plate, ω0 is the angular 
resonance frequency, ηp is the internal loss factor of the 
plate and n, m are integers. Similarly, to section 3.1.2 there 
is no power directly input to the plate therefore Eqn. (4) is 
also applied. 

3.1.4 The direct field dynamic stiffness matrix (D(2)
dir) 

The direct field dynamic stiffness matrix is given by the 
matrix inverse of the receptance matrix [1]: 

𝐃
( )

= 𝐇𝐝𝐢𝐫
𝟏 (11) 

 
The terms of Hdir,jk are given by [1]: 
 

𝐻 , = 𝐺(𝑟 ) (12) 
 
where G is the Green’s function for the infinite plate and 
rjk is the distance between grid points j and k. The Green’s 
function is given by [1]: 
 

𝐺 𝑟 = (−𝑖/8𝐵𝑘 ) 𝐻
( )

𝑘𝑟

− 𝐻
( )

𝑖𝑘𝑟  
(13) 

 

Where 𝐻
( )is zeroth order the Hankel function of the 

second kind and k is the bending wave number. 

3.1.5 The direct field dynamic stiffness matrix of the rooms 
(D(j)

dir) 

The direct field dynamic stiffness matrix of the rooms is 
given by [3]: 
 

𝐃
( )

=
𝑖8𝜋𝜔𝜌𝑐𝑘

𝑘
{sinc(𝑘 𝑟) + 𝑖𝑓(𝑘 𝑟)} (14) 

where ka is the acoustic wavenumber, ks is the 
wavenumber corresponding to the grid spacing and 
 

𝑓(𝑘 𝑟) =
cos(𝑘 𝑟)

𝑘 𝑟
+

1

𝑘 𝑟
𝐽 (𝑥)𝑑𝑥

⁄

 (15) 

and 
 

𝑟 = (𝑥 − 𝑥0)2 + 𝑦 − 𝑦
0

2
 (16) 

where J0(x) is a zeroth order Bessel function of the first 
kind. (Ddir is undefined along the diagonal and is set to 
zero.) 
The function is plotted where {sinc(𝑘 𝑟) + 𝑖𝑓(𝑘 𝑟)} >
0, this cut-off depends on the frequency resolution and 
mesh density. Langley [3] recommends four points per 
half wavelength; this was the mesh density implemented 
unless the modal mesh density requirement was higher. 
Also note the condition ks>>ka, Wavenumbers which do 
not meet the condition ks/ka>1 are not included in the 
results. 
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3.1.6 Minimum mesh requirements 

The minimum mesh requirements for each part of 
dynamic stiffness calculation were given by the maximum 
of: Six points per bending wavelength for the Dd mesh, 
eight points per bending wavelength for the Ddir

(2) 
mesh or eight points per acoustic wavelength for the Ddir

(1) 
or Ddir

(3) mesh. Grids no smaller than a 20x20 mesh were 
used. 

3.2 Loss factors determined by a traditional SEA 
method 

The coupling loss factors were determined by using the 
typical equations for a three-subsystem model [5, 6]. The 
radiation coupling is given by: 
 

𝜂
ij

=
𝜌

0
𝑐0𝜎

𝜔𝜌ℎ
 (17) 

 
Where ρ0 is the gas density, c0 is the speed of sound of the 
gas, σ is the radiation efficiency given by Leppington et al. 
[7]. The plate is assumed to be simply supported and installed 
in an infinite baffle. The non-resonant coupling is given by: 
 

𝜂
ij

=
𝑐0𝑆

4𝜔𝑉𝑖

𝜏𝑁𝑅 

 
(18) 

where S is the surface area of the plate, Vi is the volume of 
subsystem i and τNR is the non-resonant transmission 
coefficient, given by Leppington et al. [8]. The modal 
densities of the plates are given by [5, 6]: 
 

𝑛B,p =
𝜋𝑓𝑆

𝑐B,p
2

 (19) 

 
Where f is frequency and cB,p is the bending wave phase 
velocity and the modal densities of the rooms are given by 
[5, 6] 
 

𝑛R =
4𝜋𝑓2𝑉

𝑐0
3

+
𝜋𝑓𝑆T

2𝑐0
2

+
𝐿𝑇

8𝑐0

 (20) 

 
where 
 

𝑆T = 2(𝐿𝑥𝐿𝑦 + 𝐿𝑥𝐿𝑧 + 𝐿𝑦𝐿𝑧) (21) 
and 
 

𝐿T = 4(𝐿𝑥+𝐿𝑦 + 𝐿𝑧) (22) 

Where Lx, Ly and Lz are the dimensions of the rooms. 

3.3 Consistency relationship 
 
The coupling loss factors can also be calculated or verified in 
the reverse direction using the consistency relationship. This 
is given by [5]: 
 

𝜂
ij

𝑛j

=
𝜂

ji

𝑛i

 (23) 

4. RESULTS 

4.1 Coupling loss factors 

4.1.1 No deterministic system (i.e. Dd=0) 

 
Figure 2. Coupling loss factors for the CLT plate. 

 
Figure 3. Coupling loss factors for the steel plate. 
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Figure 4. Coupling loss factors for the Perspex plate. 

 
The different calculation methods to determine the coupling 
loss factors are compared in Figs. 2, 3 and 4. The η12 and η23 
loss factors are replicated using the hybrid method, however 
unlike the traditional method a η13 loss factor is obtained over 
the whole frequency range (not just below the critical 
frequency, fc). The physical significance of the loss factor, η13 
in this frequency range (f>fc) is unclear. Further work would 
be required to extend the upper frequency range of the hybrid 
model. Further work is also required to appropriately include 
the deterministic dynamic stiffness (Dd) (see also section 
4.1.2 and 4.1.3). 
 
4.1.2 Using the driving point dynamic stiffness (i.e. 
Dp=Dpoint) 

 

Figure 5. Coupling loss factors for the Perspex plate 
(Dp=Dpoint). 

 

Figure 6. Coupling loss factors for the CLT plate 
(Dp=Dpoint). 

 
 
Preliminary efforts to incorporate a deterministic dynamic 
stiffness (Dd) are shown in Figs. 5 and 6. The Agreement 
between the calculation methods is diminished.  This is 
particularly true of the η13 loss factor for both plates. 

4.1.3 Using a deterministic dynamic stiffness (Dd) 

The coupling loss factors when incorporating a 
deterministic dynamic stiffness (Dd) are shown in Fig. 7 
and 8. 
 
 

 

Figure 7. Coupling loss factors for the Perspex plate 
(including Dp). 

3.15 6.3 
12.5 25  50  

100 
200 

400 
800 

1600
3150

One-third octave band frequency (Hz)

10 
20 
30 
40 
50 
60 
70 
80 
90 

100
110
120
130
140
150
160

12
 hybrid method

13
 hybrid method

23 hybrid method

12
 SEA

13
 SEA

23 SEA

3.15 6.3 
12.5 25  50  

100 
200 

400 
800 

1600
3150

One-third octave band frequency (Hz)

10 
20 
30 
40 
50 
60 
70 
80 
90 

100
110
120
130
140
150

12 hybrid method

13
 hybrid method

23
 hybrid method

12 SEA

13
 SEA

23
 SEA

3.15 6.3 
12.5 25  50  

100 
200 

400 
800 

1600
3150

One-third octave band frequency (Hz)

10 
20 
30 
40 
50 
60 
70 
80 
90 

100
110
120
130
140
150
160

12
 hybrid method

13
 hybrid method

23 hybrid method

12
 SEA

13 SEA

23
 SEA

3.15 6.3 
12.5 25  50  

100 
200 

400 
800 

1600
3150

One-third octave band frequency (Hz)

10 
20 
30 
40 
50 
60 
70 
80 
90 

100
110
120
130
140
150

12 hybrid method

13
 hybrid method

23
 hybrid method

12
 SEA

13
 SEA

23 SEA

6001



10th Convention of the European Acoustics Association 
Turin, Italy • 11th – 15th September 2023 • Politecnico di Torino 

 

 

 

Figure 8. Coupling loss factors for the CLT plate 
(including Dp). 

 

4.2 Sound insulation 

The results of the calculated sound insulation are shown in 
Figs. 9, 10 and 11. The sound insulation for the traditional 
SEA and the infinite plate models are presented; further work 
would be required to extend the upper frequency range of the 
hybrid model. The critical frequencies of the CLT, steel and 
Perspex plates are 423 Hz, 2393 Hz and 2898 Hz 
respectively.  

 

 

Figure 9. Sound insulation for the CLT plate. 

 

 

Figure 10. Sound insulation for the steel plate. 

 

Figure 11. Sound insulation for the Perspex plate. 

5. CONCLUSION 

The early results are presented for our hybrid model. The η12 
and η23 loss factors are replicated using the hybrid method, 
however unlike the traditional method a η13 loss factor is 
obtained over the whole frequency range (not just below the 
critical frequency, fc). The meaning of this loss factor above 
the critical frequency (f> fc) is unclear. Further work would 
be required to extend the upper frequency range of the model. 
Future work is also required to improve accuracy and fully 
include a deterministic system in the model. 
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