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ABSTRACT* 

This paper examines absolute position feedback using 
dislocated sensor-actuator pairs to design and 
implement an active metamaterial cell for non-
reciprocal vibration transmission. It has been shown 
previously that by using dislocated sensor-actuator 
pairs to implement absolute velocity feedback, a stable 
and robust nonreciprocal vibration transmission can be 
achieved. In contrast to other active approaches, which 
typically induce narrowband non-reciprocity, the 
dislocated transducer pair methodology induces a 
broadband non-reciprocity. However, the passive cell 
before control must be carefully designed to mitigate 
instability due to the lack of collocation between 
sensor-actuator pairs. Furthermore, with absolute 
velocity feedback, the reciprocity loss decreased as the 
frequency decreased. Therefore, the achievable non-
reciprocity was relatively weak at low frequencies 
where the error velocity signals were fairly small. It is 
therefore of interest to consider pure absolute position 
feedback, where strong quasi-static and low-frequency 
error signals could potentially induce a large 
nonreciprocity also at low frequencies. Therefore, in 
this study comprehensive stability and performance 
analyses of the absolute position feedback using 
dislocated sensor-actuator pairs are carried out both 
theoretically and experimentally. The difference in the 
vibration transmissibility in the two opposite directions 
obtained experimentally amounts to quite spectacular 
30 dB in the frequency range between 30-1000Hz. 
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1. INTRODUCTION 

There has been an intense surge of interest in active 
metamaterials in the last decade in various areas of 
physics and engineering [1-3]. In particular, active 
metamaterials exhibit previously unseen properties on 
the macro-scale, which cannot be found in natural 
materials. For example, Kramers-Kronig relations 
bound the dispersion properties of passive, linear time-
invariant (LTI) media, which limits the spectral range 
of the target effective properties. Furthermore, the 
efficiency of passive metamaterials is hindered by 
losses, as there is no compensation mechanism for 
potentially undesirable, yet inherent energy dissipation 
due to, for example, structural damping [1]. By 
providing energy input into the material these losses 
can be compensated for, which enables a whole new 
spectrum of exotic wave phenomena. In this paper, the 
particular phenomenon in focus is the non-reciprocal 
vibration transmission in mechanical structures, which, 
using the proposed methodology, is achievable 
regardless of their linear elastic nature. The reciprocity 
principle in structural dynamics states that if points of 
excitation and response of a structure are switched, the 
output quantity will not change. This is often a useful 
property, but its disruption can also be of interest. Non-
reciprocal vibration transmission is interesting for 
applications such as invisible acoustic sensors [4], 
acoustic cloaking devices [5], vibration isolation [6], 
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autonomous and active guiding of sound beams [7], or 
full duplex sound communication where acoustic 
waves can be transmitted and received from the same 
transducer on the same frequency channel [8]. 
Approaches to cancel the reciprocity in vibroacoustics 
have mostly relied on non-linear effects, [9] that, 
unfortunately, are accompanied by unwanted features 
such as bulky structures, high power consumption and 
large signal distortion. Recently, a new concept 
emerged that proved in theory and practice to be 
exceptionally efficient at breaking the reciprocity [6, 
10] of vibroacoustic structure. It was observed that by 
using the so-called non-collocated sensor-actuator 
pairs forming velocity feedback loops, the amplitudes 
of two transfer mobility functions for two opposite 
directions of propagation through the active 
metastructure showed to be different along the wide 
frequency band. This indicates a strong loss of 
reciprocity. Furthermore, this difference was 
increasing as the frequency increased. The static 
reciprocity, however, remained intact due to the 
velocity error signal used that vanishes as the 
frequency tends to zero. On the other hand, if position, 
rather than velocity is measured, the error signal would 
not vanish, but instead, increase as frequency tends to 
zero. This article is therefore dedicated to the absolute 
position feedback control with dislocated sensor-
actuator pairs, and discusses ways to ensure stability 
and convincing control performance for such a sensor-
actuator arrangement. 

2. THEORETICAL CONSIDERATIONS 

2.1 Negative position feedback 

Both mentioned control concepts are briefly introduced 
next. Fig. 1a) shows a 2-degree-of-freedom (2DOF) 
mechanical system. Each is modelled as a single-
degree-of-freedom (SDOF) oscillator. Each of the two 
oscillators approximates a potentially more 
complicated distributed parameter structure through its 
fundamental vibration mode, like, for example, in 
references [11, 12]. The first substructure (brown) is 
modelled through mass 

mod
e firrfir

 and spring 

or 
turreur

  whereas the 
second one (pink) is modelled through mass 

own
rea  as

 and 
spring 

ed
onnon

. A velocity sensor is placed on the second 
substructure operating within a feedback loop encircled 
in yellow colour. The velocity signal is augmented by 
a proportional gain and fed back to a force actuator 
reacting between the first and the second substructure. 
This kind of arrangement induces a strong reciprocity 

loss when comparing the response of mass  to 
forcing applied at mass 

the he 
 to the response of mass 

to o 
 

to forcing exerted at mass 

ree 
totto

. 

 

Figure 1. Model of a 2DOF metamaterial cell 
with 2 active schemes: a) velocity feedback, 
b) position feedback. 

When represented as amplitudes of the two 
corresponding transfer mobility functions, it becomes 
clear that the reciprocity loss increases with frequency 
[6, 10]. Therefore, at low frequencies, the amplitudes 
are identical, as if the feedback loop is not active. In 
theory, this problem could be circumvented by using 
position feedback in order to ensure a large low-
frequency error signal. This kind of control architecture 
is shown in Fig. 1b). However, a position sensor and a 
force actuator are not dual, that is, the error position 
and the control force are not complementary in terms 
of mechanical power. This may cause both stability and 
control performance problems in addition to those 
expected due to the dislocated sensor-actuator 
arrangement.  

Attention is now turned to Fig. 1b). The two 
substructures are coupled through a coupling spring 

woo
 

and a dashpot 

no
re ce 

. The dashpot 

F
h ah 

 is used in order to 
consider the relatively large air-gap damping which is 
typical for coil-magnet actuators [13], whereas the 
damping of the two uncoupled substructures is assumed 
negligible for simplicity. The error position sensor is 
mounted at the second substructure modelled by mass 
neg
mouumou

 and spring 

mp
secoec

. The control actuator exerts two 
secondary (control) force components proportional to 
the error position signal: an action, 

ctu
ntstssss

, and a reaction, 
sec
thee he

. The action control force component is collocated 
with the position sensor whereas the reaction control 
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force component is dislocated from the sensor (see Fig. 
1). The mathematical model of the lumped parameter 
system is described with 

, (1) 

where ,  and 

,

 are mass, damping and stiffness 
matrices, respectively, 

e m
 is the position vector, 

nesssw
m
whe
mat
w
m trat

e
ceeses

, 
ss,sss rr

,
,

 and 

nd
ect

 is a vector of primary excitation,

nesss
mam tat eess,s, 

nd an
. With such a scheme, the control law, 

, (2) 

can be written directly into the stiffness matrix in the 
following way, making it diagonally asymmetric: 

. (3) 

This effectively induces asymmetry in the dynamic 
stiffness matrix 

inndun ucu es asysyymmmm etryme
, and in its inverse, 

Th
sttiffnfff

which is the matrix of the systems frequency 
response functions (FRF) [10]. The variable 

s in
req

nve
que
n
q

 is 
the Laplace variable, where  represents the 
imaginary unit and  is the frequency. In such a way, 
the displacement vector can be calculated as:  

. (4) 

The velocity vector can be calculated as: 

, (5) 

where  is the diagonally asymmetric system mobility 
matrix. For example, the velocity response of the 
second substructure, 

asym
 veveveeleee

mme
locloocitcic

, due to the primary 
forcing at the first substructure, 

tyitcic
d, dud
, is now different 

from the response of the first structure, 

p
diffeffefeereee

y
renrentnn

, 
due to the forcing at the second substructure 

, 
. 

Therefore, the two transfer mobilities, 
ubstbststtruttt

 and 
ure e 

, of 
the closed-loop system shown in Fig. 1b), are compared 
in order to quantify the reciprocity loss.   

2.1.1 Stability 

In order to discuss the stability of the feedback loop, 
Routh-Hurwitz stability criterion is used first. 
According to this criterion, a necessary condition for 

stability is that all the coefficients of the characteristic 
equation are of the same sign. Further to that, all 
determinants of the Routh-Hurwitz array must be 
positive. After calculating the coefficients of the 
characteristic equation and the determinants of the 
Routh-Hurwitz array, the necessary condition for 
stability of the system reads: 

It can be seen from inequality (6) that in order for the 
active system to be stable for all positive feedback 
gains, g≥0, the natural frequency of the first 
substructure (brown spring-mass system in Fig. 1) must 
be lower than the natural frequency of the second 
substructure (pink spring-mass in Fig. 1). This implies 
that by carefully choosing parameters of the passive 
system before control, unconditional stability can be 
accomplished despite the dislocated sensor-actuator 
configuration. Note that collocated sensor-actuator 
configuration is normally preferred for its beneficial 
stability properties [14]. It is interesting to note that the 
stability condition on the passive structure before 
control is opposite of that calculated in ([6], [10]) 
considering the absolute velocity feedback control 
scheme like the one shown in Fig. 1a). In other words, 
if absolute velocity feedback is considered instead of 
the absolute position feedback, then the natural 
frequency of the first substructure must be higher than 
the natural frequency of the second substructure.  

If negative feedback gains are considered (g≤0) then 
the feedback loop implements positive position 
feedback. In this case, if the passive system properties 
satisfy Eqn. 6, the unconditional stability is not 
possible and there exists a maximum stable feedback 
gain. Fig. 2 illustrates the range of positive and 
negative stable feedback gains for the system shown in 
Fig. 1b) assuming that the passive system properties 
satisfy Eqn. 6. Note that positive feedback is much 
more difficult when using velocity error signals, 
because of inevitable stability issues with positive 
velocity feedback. 
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Figure 2. Theoretical stability conditions 
for positive and negative position feedback 
gains for the system in Fig. 1b). 

The stability of the feedback loop can be further studied 
by employing the Nyquist stability criterion which 
enables to conveniently consider relative stability 
properties such as the gain and the phase margins. The 
mechanical parameters of the system are shown in Tab. 
1. As 
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, Eqn. 6 is satisfied, and the 
unconditional stability is guaranteed for g>0. This 
means that arbitrarily large positive feedback gains 
may be used without inducing an unstable response. 
Indeed, it can be seen in the Nyquist plot in Fig. 3, solid line, 
that the locus of the sensor-actuator open-loop Frequency 
Response Function (FRF) can never cross the negative real 
axis.  

 

Figure 3. The theoretical sensor-actuator 
open-loop FRF for the absolute position 
feedback: a) ideal double integrator (solid 
line), and b) real double integrator (dashed 
line). 

Table 1 Parameters of the system 

 

This means that there can be no open-loop zeros in the right 
hand-side of the complex plane. However, this is true only if 
ideal sensor-actuator transducers are assumed. The error 
position signals in practice can be obtained by double 
integration of standard accelerometer signals. The integrator 
in this study is realised by using a combination of a second 
order low-pass Butterworth filter in series with a first order 
high-pass filter having a 5 Hz cut-off frequency. The two 
filters add additional poles to the sensor-actuator open loop 
FRF. As a result, the Nyquist locus is rotated in the counter-
clockwise direction in comparison with the locus assuming 
an ideal double integrator (Fig. 3, solid line vs. dashed line). 
As a result, the closed-loop system is no longer 
unconditionally stable since there is a crossing of the Nyquist 
locus over the negative reals axis due to the integrator 
resonance (Fig. 3, zoomed plot area).  

2.1.2 Performance 

The comparison of the amplitudes of the closed-loop transfer 
mobilities, 

rison os nn ooooof of
 vs. 

mmplitmplitittuttitudu
 is shown in Fig. 4 as an 

illustration of the achievable reciprocity loss. 

 

Figure 4. The loss of reciprocity induced by 
a negative position feedback control with g 
= 40000 N/m. 

As can be seen in the figure, the simulated difference 
between the two amplitudes assuming an idealised double-
integrator is around 24 dB at 30 Hz for the feedback gain of 
40000 N/m. This value of the feedback gain is similar to the 
spring stiffness k1 (see Tab. 1). The reciprocity loss decreases 
as the frequency increases due to the mass law which dictates 
a roll-off of 40 dB per decade of the error signal with 
increasing the frequency. One mobility function (

h dict
nal wl wwwwww

) is 
boosted by switching the active control on, while the other 
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one ( ) slightly decreases. This decrease can also be 
larger depending on the parameters of the passive system 
before control. The increase of the feedback gain separates 
the two resonance frequencies of the closed-loop system 
more and more, since the fundamental resonance frequency 
shifts downwards while the second resonance shifts 
upwards. This is associated with the negative position 
feedback, which has the effect of adding to the stiffness of 
the existing passive springs, see the stiffness matrix in Eqn. 
3.  

2.2 Positive position feedback 

2.2.1 Stability 

However, one may go beyond the negative position 
feedback (g≥0) and consider positive position feedback 
(g<0). It can be shown by using the Routh-Hurwitz 
stability analysis that the unconditional stability for 
positive position feedback cannot be obtained if Eqn. 6 
is respected, even if an idealised double-integrator is 
assumed. Instead, stability is guaranteed under the 
condition:  

 , (7) 

see also Fig. 2. Despite the conditional stability of the 
feedback loop, this is also an interesting control 
strategy to induce the non-reciprocal response. 
However, with the positive position feedback the 
stability of the system may become corrupted by the 
frequency response of realistic integration filters. This 
can be seen by considering the sensor-actuator open-
loop FRFs shown in Fig. 5. In contrast to the situation 
with the negative position feedback (Section 2.1), 
where the counter-clockwise rotation induced by the 
realistic integrators in comparison with the ideal 
integrators does not jeopardise the stability, with the 
positive position feedback this counter-clockwise 
rotation is detrimental. This can be seen in Fig. 5 
whereby comparing the solid line (ideal integrator) to 
the dashed line (realistic integrator) one observes a 
reduction of the phase margin due to the use of the 
realistic integrator. This problem may be circumvented 
by adding a low-pass filter with a higher cut-off 
frequency to rotate the locus of the sensor-actuator 
open loop FRF back in the clockwise direction (Fig. 5, 
dash-dotted line). However, this rotation must not be 
excessive. Otherwise, the active stiffness approach 
turns into active damping. Therefore the cut-off 

frequency of this additional low-pass filter must not be 
too low (1 kHz was used in the present example).  

 

Figure 5. Sensor-actuator open-loop FRF 
assuming a positive position feedback: ideal 
double integrators (solid line), practical 
double integrators (dashed line), practical 
double integrators with a LP-filter (dash 
dotted line). 

2.2.2 Performance 

The control performance using the positive position 
feedback can be assessed through the results shown in 
Fig. 6. A large difference of about 25 dB in the 
amplitudes of the two transfer mobilities 

ults
5 dddBddd

 and 

wn in
thehehee eee

  
is accomplished when using the feedback gain of g = -
40000 N/m. Even though the absence of reciprocity is 
evident, it is noticeable that in contrast to all previous 
cases studied, the amplitudes of the two mobilities are 
now both increased with respect to the passive case. 
Also, in contrast to the negative position feedback, an 
increase of the feedback gain merges the resonant 
frequencies together. This is because the control loop 
gain is now subtracted from the passive spring 
stiffnesses which reduces the total stiffness of the 
system, see again Eqn. 3, stiffness matrix. The two 
FRFs are characterised by a damped response at the 
second resonance frequency which can be attributed to 
the 1 kHz low-pass filter used. This is because the 
position feedback gradually turns into velocity-like 
feedback as the frequency approaches and surpasses the 
cut-off frequency of the filter. This also widens the 
frequency range in which the loss of reciprocity is 
relatively high. The filtered position feedback 
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effectively establishes a proportional-integral (PI) 
controller. The application of this kind of controller is 
an interesting direction for future research. 

 

Figure 6. The loss of reciprocity induced by a 
positive position feedback control with g = -
40000 N/m. 

3. EXPERIMENTAL VALIDATION 

3.1 Experimental test rig 

The experimental setup is shown in Fig. 7. The setup mimics 
the lumped parameter model in that the masses are realised 
by concentrating fairly rigid lumps of material whereas the 
stiffnesses are realised by lightweight flexible straight or 
curved beam elements. Masses 

mps 
htweewe

 and 

mate
flexfle

 are mimicked by 
blocks connected via leaf springs (stiffnesses 

ble
e mmm

 and 

aigh
ckeedke

) to a 
massive frame which is mounted on a rigid foundation. 
These blocks of material are connected to each other by a leaf 
spring (stiffness 

hich
aterrier

). A significantly greater mass and 
stiffness of the blocks in comparison to the masses and 
stiffnesses of the leaf springs ensure that the first two natural 
frequencies, as well as their corresponding vibration modes, 
for the most part agree with ones that would be calculated 
assuming that the springs do not possess inertia and that the 
blocks were rigid. Accelerometers are used to obtain the error 
position signal and to measure the characteristic frequency 
response functions in the two opposite directions. The 
control actuator is in the middle of the setup (grey rectangle), 
whereas the primary excitations are provided by the 
peripheral actuators (blue rectangle). Note that mass 

le),
the

 
and stiffness 

prim
uatoorto

 are larger than their counterparts 

tthe 

, 
per
anddnd

 to ensure stability, in accordance with Eqn. 6. 

 

Figure 7. 3D printed experimental test rig of 
the 2DOF metamaterial cell. 

3.2 Experimental results for negative position 
feedback 

The Nyquist plot of the open-loop sensor-actuator FRF, 
assuming negative position feedback is presented with 
the solid blue line in Fig. 8. The open-loop gain is set 
so that the locus goes exactly through the Nyquist point 
(-1+0j). It can be seen when comparing with the 
theoretical results shown in Fig. 3, dashed line, that the 
theory and the experiment qualitatively agree. There 
are, however, quantitative differences that can be 
attributed to the fact that the experimental setup is a 
distributed parameter structure. Therefore, additional 
smaller circles can be seen which correspond to higher-
order resonances at higher frequencies. The amplitudes 
of the two characteristic FRFs are shown in Fig. 9. The first 
is obtained by measuring the velocity of the right-hand 
side lumped mass due to the voltage by the left primary 
actuator (

ed by
ped md mmmmmm

) and the second is obtained by measuring 
the velocity of the left-hand side lumped mass due to 
the voltage by the right primary actuator (

by m
masmasassssss

). These 
two characteristic FRFs are at low frequencies nearly 
proportional to the two transfer mobilities (

. T)
es neseeeee nnean

 and 
two
propropoppoppp

) discussed in Section 2 since the influence of the 
coil inductance is only significant for the particular 
type of the actuator used above the frequency of about 
2.4 kHz. Around 25dB difference is achieved between 
the two amplitudes in a broad band of frequencies. 
However, this difference gradually reduces as the 
frequency increases due to the decrease of the error 
signal with increasing the frequency. 
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3.3 Experimental results for positive absolute 
position feedback 

As already shown in Section 2.2.1, a much larger 
stability margin is enabled by adding a low-pass filter 
with a cut-off frequency at 1 kHz, which results in the  

 

Figure 8. Experimental results for sensor-
actuator open-loop FRF assuming positive 
(red solid line) position feedback with 1 
kHz LP filter and negative (blue solid line) 
position feedbacks. 

 

Figure 9. Experimental response of the 
negative position feedback. 

Nyquist contour of the sensor-actuator FRF moving 
clockwise, thereby enabling larger feedback gains, see 
Fig. 8. When it comes to the performance of the active 
control system, the damping effect around the second 
resonance is also confirmed experimentally. This is due 

to the application of the low-pass filter as already 
discussed in Section 2.2.1. When comparing the 
reciprocity loss and the resonance frequency shifts 
(Fig. 10), the experimental results are qualitatively 
similar to the simulation results. The reciprocity loss at 
30 Hz is around 30 dB and gradually decreasing with 
the increase in frequency. 

 

Figure 10. Experimental response of the 
positive position feedback. 

4. CONCLUSION 

In this paper, an active metamaterial cell for non-reciprocal 
vibration transmission using position feedback with 
dislocated sensor-actuator pairs is discussed. The passive and 
active response of the metamaterial cell is first simulated 
using a 2DOF lumped parameter model. In contrast to earlier 
considerations, both positive and negative feedback of the 
position signal are analysed. It is shown that theoretical 
unconditional stability can be achieved despite the dislocated 
sensor-actuator configuration. This is possible if the passive 
system before control is tuned such that the natural frequency 
of the uncoupled second substructure is larger than the 
natural frequency of uncoupled first substructure. This is 
exactly opposite to the stability condition when using 
absolute velocity feedback using dislocated sensor-actuator 
pairs [10], [15]. This may pose a challenge in case a 
combination of velocity and position feedback is considered 
to further widen the frequency range where the reciprocity is 
cancelled. However, even with pure absolute position 
feedback the reciprocity loss obtained is quite large (20-30 
dB) and broadband (30-1000 Hz). The experimental analysis 
confirms the theoretical results and the experimentally 
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obtained loss of reciprocity at low frequencies is of order of 
30 dB.   
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