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ABSTRACT

Complex-valued neural networks can accept complex-
valued data as an input and present an alternative to
their real-valued counterparts. This can be advantageous
for various audio signal processing applications such as
for audio source localisation utilising microphone arrays.
This paper builds on previous work aimed at comparing
the performance of complex and real valued neural net-
works under equal operating conditions. Furthermore, this
work investigates the performance of both types of net-
works in a 3D source localisation task. In this work an
evaluation is made of the performance of networks that
are trained using simulated microphone signals but which
are then applied to the outputs of real microphone signals.
This has advantages due to the simplicity in creating large
datasets for the training phase. Both networks are com-
pared to MUSIC, a common classical localisation tech-
nique. Results show that both network types can learn
from simulated data to localize measured data, although
their performance depends on the features with which the
networks are trained.
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1. INTRODUCTION

Machine learning approaches have shown impressive per-
formance for use in sound source localisation (SSL) com-
pared to classical signal processing techniques, with var-
ious neural network architectures developed to solve dif-
ferent localisation tasks. Various surveys [1, 2] and SSL
challenges such as Detection and Classification of Acous-
tic Scenes and Events (DCASE) and Learning 3D Audio
Sources (L3DAS) show the potential of machine learning
approaches in this area and the rapid increase in the pop-
ularity of their use.
Whilst neural networks are able to learn patterns from a
training dataset, one of the main issues is their generaliza-
tion performance. Datasets which contain training mate-
rial that is too similar have the risk of overfitting the neu-
ral networks, which means that the network can learn the
training data well, but cannot generalize to new data, es-
pecially if new data is too different from the training ma-
terial. If the training material is too different, the network
can struggle to learn any patterns.
One solution is to build large datasets which contain
enough differing material from various scenarios in order
to make the network as robust as possible. A large dataset
can be easily achieved if one uses simulated data, although
it is well known that simulated data is not always repre-
sentative of the real-world alternative. For example, sim-
ulated microphone array data may be easily created under
a free field assumption, whereas real-world data usually
contains reverberation or scattering effects. In addition
to this, especially in audio signal processing, gathering a
large set of measurements to build datasets can be difficult
and expensive.
Recently, researchers have tried to close the gap between
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Figure 1: MLP model with one hidden layer

synthetic and measured data for applications such as au-
tonomous driving [3], radar [4] or robotics [5]. Whilst
the basic idea is to use only simulated data for training
and real data for testing the neural networks, one needs
to develop an understanding of the ideal training features
that extract enough useful information from synthetic data
which characterise the measured data. Also, the type of
network used can have a significant influence on the per-
formance quality.
This work considers how well a simple multilayer percep-
tron (MLP) network can learn from only synthetic mi-
crophone array signals to localize sources in a 3D space
using measured microphone signals as testing material.
We focus on comparing a real-valued MLP (rMLP) with
a complex-valued MLP (cMLP) using different training
features and various network sizes. While the use of
complex-valued networks for sound source localisation
has not been studied much in the literature, there is some
work investigating the potential advantages of training
networks using complex-valued data for audio source lo-
calisation (see e.g. [6–9]). These studies have yet to pro-
vide definitive conclusions regarding any benefits to local-
isation performance given by the use of complex-valued
networks. The issue is thus further investigated below.

2. REAL- AND COMPLEX-VALUED
MULTILAYER PERCEPTRON (MLP)

The architecture of a simple multilayer perceptron (MLP)
with one hidden layer is shown in Figure 1. Regardless of
the type of MLP network (real- or complex-valued), the

forward propagation is given by

a(2) = W(2)x + b(2) (1)

z(2) = h(a(2)) (2)

a(1) = W(1)z(2) + b(1) (3)

z(1) = h(a(1)) = ŷ, (4)

where W(2),W(1) correspond to the matrices of weights,
b(2),b(1) correspond to the bias terms in the hidden and
output layer and h() corresponds to a nonlinear activation
function. Note that the layers are counted from the output
backwards in order to enable an easier derivation of the
backpropagation algorithm for a MLP network with l hid-
den layers. For a real-valued MLP, all terms in the forward
propagation are real, whilst for the complex MLP, all vari-
ables, including the activation function h(), are complex-
valued. The loss function L used during training for this
particular work is the mean-squared error. The authors
derived a detailed backpropagation algorithm for the real
MLP in matrix form in [10] and the gradient equations
to update the weights and biases are given below in their
final form for a general l-th set of weights.

∂L

∂W(l)
= δ(l)z(l+1)T (5)

∂L

∂b(l)
= δ(l), (6)

where δ(l) = H(l)W(l−1)Tδ(l−1) and where H(l) is the
diagonal matrix of derivatives of the activation function
h() at the l-th layer. The variable z(l+1)T is always the
input to the set of weights preceding the l-th hidden layer.
If l = 1, z(1)T = xT and δ(1) = H(1)Td, where dT =
[d1, d2, ..., dK ]. For the complex-valued MLP, the deriva-
tion of the backpropagation was presented in detail in [11]
and the gradient equations for the same set of weights and
biases at the l-th layer are given by

∂L

∂W(l)∗ =
1

2

[
0 I

]
δ(l)z(l+1)H (7)

∂L

∂b(l)∗ =
1

2

[
0 I

]
δ(l), (8)

where δ(l) = H̃
(l)T

W̃
(l−1)T

δ(l−1) and where H̃
(l)

denotes
the composite matrix that contains the diagonal matrices
of derivatives of activation functions at the l-th hidden
layer and is of form

H̃
(l)

=

[
H(l) Ĥ

(l)

Ĥ
(l)∗

H(l)∗

]
, (9)
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. In Equation (7), I cor-

responds to an identity matrix and 0 is a matrix of zeros.

W̃
(l−1)

denotes the composite matrix of the weight matrix
at the (l − 1)-th layer and is of form

W̃
(l−1)

=

[
W(l−1) 0

0 W(l−1)∗

]
. (10)

Similarly to the real MLP, the vector δ(l) contains the gra-
dient terms up to the input into the l-th layer. In other

words, for l = 1, the vector becomes δ(1) = H̃
(1)T

d̃ and
d̃ =

[
d∗ d

]
, where d = ŷ − y.

It is important to note that the backpropagation equa-
tions presented here were derived to work for any type
of complex-valued activation functions, holomorphic or
non-holomorphic, so that one is not limited by the choice
of activation function. A detailed discussion of the differ-
ences between complex-valued functions can be found for
example in [8].

3. EXPERIMENTS

3.1 Dataset generation

Two main datasets were used. One was based on sim-
ulations of sound interacting with a rigid sphere. The
other was based on measurements of the sound fields gen-
erated in a semi-anechoic laboratory space provided by
the Audiolab at the Institute of Sound and Vibration Re-
search in Southampton. The measured signals were gen-
erated by loudspeakers surrounding an Eigenmike hav-
ing 32 capsules [12] that was placed in the middle of
the semi-anechoic room. The total number of loudspeak-
ers available was 39 but only 10 of these were used to
evaluate the ability of the neural networks to localise
sources. The positions of the sources used for local-
isation by the neural networks were reasonably evenly
spread in angular location and these are shown in Fig-
ure 2. The positions of all 39 sources were used in eval-
uating the effectiveness of the MUSIC algorithm, as de-
scribed in more detail below. In constructing the datasets
for training and evaluation of both neural networks and the
MUSIC algorithm, speech, guitar and noise signals were
used. Out of the 32 channels available from the Eigen-
mike, only 4 of these were used to create the dataset.
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Figure 2: Chosen loudspeaker positions for the
dataset generation. The angular elevation and az-
imuth are shown relative to a coordinate system cen-
tred on the spherical microphone array

The channels were chosen to produce a tetrahedral sen-
sor array with microphones having the following spherical
coordinates: (45◦, 35◦, 4.2 cm), (−45◦,−35◦, 4.2 cm),
(135◦,−35◦, 4.2 cm) and (−135◦, 35◦, 4.2 cm), where
4.2 cm corresponds to the radius of the sphere. The chosen
microphones correspond to channels 6, 10, 26 and 22 of
the Eigenmike. The use of these channels is motivated by
the fact that the multichannel recording consists of time
differences due to the spacing between the microphones
and level differences due to the sound scattering gener-
ated by the rigid sphere [13].
The simulated dataset was created by convolving the
mono input signal (speech, guitar or noise) with simulated
impulse responses from the 10 specified source positions
to the four microphone positions on the surface of the mi-
crophone array. Each source was assumed to produce a
plane wave incident on a rigid sphere of radius a in free
field, assuming the microphones have a perfect omnidirec-
tional response with negligible capsule size situated on the
surface of the rigid sphere. In the frequency domain, the
acoustic pressure response p given by this model is [14]

p(Θ, k) =
1

(ka)2

∞∑
n=0

(2n+ 1)jn+1Pn(cos(Θ)

h′
n(ka)

, (11)

where Θ is the angle between the position on the rigid
sphere surface and the incident source position (given by
the dot product between the two unit norm vectors point-
ing towards the microphone and source position). The
wavenumber is denoted by k whilst j is the imaginary
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unit, Pn is the n-th order Legendre polynomial and h′
n

is the derivative of the n-th order spherical Hankel func-
tion of the second kind. In practise, the infinite summa-
tion must be truncated and in this work a maximal order
N = 80 was used. This corresponds to accurate repre-
sentation of the acoustic pressure across the entire audible
spectrum as per the N = ka rule of thumb [15]. A radius
of a = 0.042 m was used to match that of the Eigenmike.
Following this, the final training and testing datasets for
each signal type consisted of 4-channel recordings (sim-
ulated or measured) of 3 types of signals from 10 differ-
ent source positions. For the training stage using simu-
lated data, each signal was split into frames of 128 sam-
ples, which corresponds to a frame duration of 2.7 ms at
a sampling frequency of 48 kHz. The frame was long
enough to capture the relative delays between the 4 micro-
phones. The total number of frames was split randomly
into 80% used for training and 20% used for validation.
This helps to avoid issues during training such as over-
fitting. The measured data was only used to test the per-
formance of the networks after they were trained on the
simulated recordings. Both network types were trained in
turn by using all 10 source positions to localise either the
speech, guitar or noise signals.

3.2 Feature generation

Two different input features were used separately to train
the networks and compare their performance. The first
chosen feature is the basic Fast Fourier transform (FFT)
of the 128 samples time frame, where the 4 channels were
concatenated into a 1-dimensional complex-valued vec-
tor. For the rMLP, the real and imaginary parts of the
1-dimensional vector were concatenated in order to cre-
ate a single real-valued input vector. In the case of the
cMLP, the 1-dimensional complex-valued vector was used
directly as an input feature. The second input feature that
was used is based on the well-known generalized cross-
correlation with phase transform (GCC-PHAT), which has
been used extensively for training machine learning algo-
rithms to localise sound sources. In this work, only the
normalized cross-power spectrum (CPS) is used and can
be defined as

CPS(k) =
Xi(k)Xj(k)

∗

| Xi(k)Xj(k)∗ |
, (12)

where Xi, Xj are the N -point FFT spectra of any two
different microphones (i ̸= j) and k corresponds to the
frequency bin, which should not be confused with the

wavenumber k used above in Equation (11).
Since each recording consisted of 4 channels, the CPS
at each frequency bin k had 6 values, corresponding to
all possible combinations of pairs of channels. For the
cMLP, the CPS of all pairs of microphones were concate-
nated into a 1-dimensional complex-valued vector, whilst
for the rMLP, the real and imaginary parts were again
concatenated to create a real-valued input vector. The
estimated output of the networks ŷ was compared to a
target output y which consisted of the source locations
expressed in terms of azimuth ϕ ∈ [−180◦, 180◦] and
elevation angles θ ∈ [−90◦, 90◦] using Eulers formula
ejθ = cos(θ) + j sin(θ). For example, if a source is po-
sitioned at (ϕ, θ) = (60◦, 30◦) = (π/3, π/6), the target
output y is (ej

π
3 , ej

π
6 ). This was done in order to enable

a fair comparison between the real- and complex-valued
networks, where for the rMLP the target output layer con-
sisted of the real and imaginary values of the target loca-
tion concatenated into a two element vector, whilst for the
cMLP the output of the Euler formula was used directly
as the target output.

3.3 Benchmark technique

The MUSIC algorithm [16] was implemented as a bench-
mark technique. The MUSIC algorithm is a subspace
method that computes a pseudospectrum, the peaks of
which occur at the angular locations of the sources. The
algorithm uses a basic peak finding method to detect the
angular locations of the highest peaks. Assuming a mul-
tichannel mixture of sources x(k) at the k-th frequency
bin, where the size of the vector x corresponds to the
number of microphones, the first step is to compute the
cross-correlation matrix Sxx = E[xxH]. The matrix Sxx

is square, its dimensions given by the number of mi-
crophones. The next step is to compute the eigenvalue
decomposition of Sxx such that the singular values are
placed in a descending order based on their magnitude.
The matrix of eigenvectors is divided into a signal sub-
space Us corresponding to the first few singular values,
and a noise subspace Un corresponding to the remain-
ing singular values. The number of singular values corre-
sponding to the signal subspace are equal to the number of
sources to be localised, whilst the rest of the singular val-
ues correspond to the noise subspace. Based on the fact
that the signal subspace of the sources to be localised is
orthogonal to the noise subspace, a MUSIC pseudospec-
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trum can be computed from

PMUSIC(θ, ϕ) =
1

a(θ, ϕ)HUnUH
na(θ, ϕ)

, (13)

where a corresponds to the steering vectors from all mi-
crophones to a direction determined by (θ, ϕ). The pseu-
dospectrum can be computed for a set of values of an-
gular source positions distributed over a spherical surface
surrounding the microphones. It follows from the orthog-
onality property of signal and noise subspaces that the
pseudospectrum should show a peak at the angular loca-
tion from which sound is arriving. The steering vectors
are given by the frequency response functions relating the
pressures at the microphone array to the source output.
These are in turn related to the Fourier transforms of the
equivalent impulse responses. Based on the array geom-
etry and the direction of arrival of the plane wave source,
steering vectors can be computed, as described for exam-
ple in [17]. In the case considered here, in order to create a
grid of angular locations, steering vectors were generated
for all 39 available loudspeaker positions. Within these 39
synthesised steering vectors, only 10 corresponding to the
chosen loudspeakers were used for the localisation experi-
ment. The synthesised steering vectors were used to eval-
uate the performance of MUSIC on both simulated and
measured data.
It is worth noting that in the case of measured data, MU-
SIC can use measured impulse responses that are trans-
formed into the frequency domain to give steering vec-
tors for the computation of the pseudospectrum. However,
in the case dealt with here, only the synthesised steering
vectors were used to evaluate how well the MUSIC algo-
rithm can make use of simulated information to localise
real recordings.

3.4 Network parameters

Both rMLP and cMLP networks were implemented in
MATLAB using two hidden layers of 100 neurons each.
The network architecture was kept simple using two hid-
den layers, since the main aim of the paper is to compare
the performance of the real-and complex-valued networks
using a like-for-like comparison, rather than necessarily
finding the best network design to solve this task.
For the case where the FFT spectrum is used as an in-
put feature, using a 128 point FFT, the input layer for the
cMLP network was 260 values long, which correspond
to the 65 FFT bins of the 4 microphone channels concate-
nated into a complex-valued vector. For the rMLP, the real

and imaginary values of the cMLP input layer were con-
catenated to form a 520 samples long real-valued vector.
When the CPS was used as input feature, the cMLP net-
work had an input layer of 390 values and the rMLP net-
work had an input layer of 780 values. Due to the fact that
the dimensions of both input and output layers are dou-
bled in the rMLP case, the size of the hidden layers was
also doubled compared to the cMLP case. The activation
function used in the hidden layers of the cMLP was the
complex-cardioid function, which was introduced in [18]
and is a complex-valued extension of the ReLU function
used in the rMLP case. Both rMLP and cMLP had the
tanh() activation function in the output layer. Both net-
works were trained using the stochastic gradient descent
algorithm and the training was stopped either after 200 it-
erations, or if the validation error started to increase, sug-
gesting the occurrence of overfitting.

4. RESULTS

The localisation performance will be evaluated using two
scenarios. For both scenarios the networks are trained on
simulated data, however the evaluation content is varied
between simulated and measured data for the two scenar-
ios. Whilst it is expected that the performance of the net-
works with measured data will be lower than with simu-
lated data, the question is whether the performance is suf-
ficiently satisfactory considering the ease in generating the
dataset. An obvious reason for this expectation is that the
simulated data is reflection free, while the measured data
was recorded in a semi-anechoic environment.
Table 1 shows a comparison between the rMLP and cMLP
when trained and tested on synthesised data using 80% of
the simulated data for training and 20% for testing for both
input features. The results are generated from localising
short bursts of noise, a speech signal or a guitar record-
ing. To assess the error in the localisation estimates from
each network, the great circle distance was used to define
the angular error between the estimated and target source
positions. The angular separation ϵ between the target and
estimated positions, nT and nE , is given by the dot prod-
uct [19]

ϵ =
1

F

F∑
f=1

arccos(nTf
· nEf

), (14)

where F corresponds to the total number of estimates
from all locations and the error ϵ is averaged over all
F estimates. Note here nT,E are unitary vectors in
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Table 1: Localisation performance in degrees using
2 hidden layers with 100 neurons and an FFT length
of 128 to create the input features. The angular error
ϵ is averaged over 5 different network training trials.
The models were trained and tested with simulated
data.

Noise Speech Guitar
FFT CPS FFT CPS FFT CPS

rMLP 91◦ 0.8◦ 92.6◦ 1◦ 89.2◦ 1.4◦

cMLP 82◦ 0.7◦ 82.4◦ 0.9◦ 82.4◦ 1.04◦

MUSIC 0◦ 0◦ 0◦

Cartesian coordinates pointing in the direction of the tar-
get/estimated source position. This metric is useful as it
combines the error in both azimuth and elevation into one
single value that is consistent for source positions over
the sphere, and not skewed by positions approaching the
sphere poles. The angular error was calculated in turn for
each evaluation signal. It can be seen that the localisation
estimates of the MLP models are quite close to each other,
but the cMLP has a slightly lower angular error than the
rMLP overall. The network models are not able to per-
form well when trained directly on the FFT spectrum. It
appeared during the training stage that the networks us-
ing the current architectures became trapped in local min-
ima, and were therefore not able to perform well during
the testing stage. A possible reason for the poor perfor-
mance could be the fact that the FFT length was very small
(128 points) therefore the input layers contained too lit-
tle useful information and the networks failed to find the
right patterns. The effect of the FFT length on the net-
works performance will be further investigated. Even so,
the cMLP was able to perform slightly better, perhaps be-
coming trapped in a lower local minimum. When using
the CPS as an input feature, the cMLP performs slightly
better than the rMLP, however the difference in perfor-
mance in all scenarios is below 1◦. As expected, the best
localisation performance happens when the networks are
trained on bursts of noise, since this type of signal includes
energy at all frequencies, which can be helpful for the net-
work models.
The MUSIC algorithm, perhaps unsurprisingly, performs
extremely well when simulated data is used both to deter-
mine the steering vectors and to evaluate its performance.
Thus the subspace technique outperforms both network
types, managing to always estimate the correct position of

Table 2: Localisation performance in degrees using
2 hidden layers with 100 neurons and an FFT length
of 128 to create the CPS input feature. The angular
error ϵ is averaged over 5 different network training
trials. The models were trained with simulated data
and tested on measured data.

Noise Speech Guitar
rMLP 27.6◦ 43.6◦ 67◦

cMLP 21.1◦ 39.9◦ 71.7◦

MUSIC 50◦ 48◦ 51.5◦

the loudspeaker that played the signal. Of course the MU-
SIC localization estimates could only be from the synthe-
sised locations, which were quite sparse (39 points dis-
tributed over the sphere) and so the algorithm does not
have to scan over a large number of angles. Secondly,
the synthesised steering vectors used to estimate the pseu-
dospectrum from Equation (13) are exactly the same as
those used to simulate the audio signal arriving from any
of the 10 chosen locations.
For the scenario where the trained networks are tested us-

ing measured data, Table 2 shows a comparison between
the two networks now using the CPS input feature only,
since the FFT spectrum showed a relatively poor training
performance using simulated data. It can be observed that
the networks trained on synthesised data are still able to
localise sources using measured data, although the per-
formance is reduced. For both noise bursts and speech
signals, the cMLP slightly outperforms its counterpart,
whilst for the guitar signal, both networks struggle to per-
form well, with the rMLP being marginally better than the
cMLP. Figure 3 illustrates the localisation estimates of the
complex-valued MLP for the two testing scenarios (simu-
lated and measured evaluation data) using short bursts of
noise as simulated training signal. As expected, the lo-
cation estimates from the measured data are noisier than
those from the simulated data, although the trend of the
target angles is followed. The same behaviour is shown
in the case of the speech signals, but the networks are not
able to localise the measured guitar signals, resulting in an
angular error of 67◦ and 71.7◦. This is surprising, since
both networks performed well when tested on the simu-
lated dataset. One reason for this could be that the guitar
recording is of a higher complexity than the speech and
noise signals and the recorded guitar signals were very
different to those simulated, compared to the noise and
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(a) (b)

Figure 3: Localisation estimates measured in degrees on the vertical axes of the cMLP using the CPS feature
as input when tested on (a) simulated noise signals and (b) measured noise signals.

speech signal cases.
The MUSIC algorithm was also employed using simu-
lated steering vectors for the pseudospectrum but with
measured evaluation signals. The performance is very
similar for the three different signals, which is advanta-
geous compared to the neural networks. However the per-
formance is lower than for the network models for noise
and speech localisation. One reason for the lower local-
isation performance of the MUSIC algorithm could be
the sparse search grid, containing only 39 points on the
sphere. However, for some of the source locations, the
MUSIC pseudospectrum did not contain a clear peak cor-
responding to one location, but was rather noisy and so
the highest peak was chosen as the location estimate.
Based on the results discussed above, two main conclu-
sions can be drawn. First, the complex-valued multi-
layer perceptron appears to perform at least as well, and
often better than, its real-valued counterpart for localis-
ing various sources in space using a simulated dataset.
Whilst the difference in localisation accuracy between
the two models are relatively small, it may be possible
to further improve the cMLP using for example different
complex-valued activation functions or by training using
a complex-valued step size [20]. The second main con-
clusion is that small neural network architectures (as those
presented here) are able to learn from simulated data to lo-
calise measured data in 2 out of 3 cases, which can be cru-
cial for applications where there is very difficult to have a
large measured dataset. While the network architectures

used in this work are simple compared to state-of-the-art
models, the results shown here could be seen as a useful
initial step for extending the work further. The authors
plan to investigate more complex network models such as
recurrent and convolutional neural networks to evaluate if
using complex-valued data can improve the localisation of
real-valued networks and if complex networks can provide
a better localisation performance using measured data, if
trained on simulated signals, especially when the acoustic
environment becomes more challenging, such as that for
example in a more reverberant room.

5. CONCLUSIONS

This paper presented a comparison between real- and
complex-valued multilayer perceptrons trained with sim-
ulated datasets to localise acoustic sources using both
simulated and measured microphone signals. The au-
thors showed that the complex-valued networks per-
formed slightly better than their real counterpart for most
scenarios. It was also demonstrated that even simple net-
work architectures are able to learn from simulated data
to localise measured data, provided the correct features
are used when training the networks.
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