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ABSTRACT

There are basically two types of approaches that aim to
explain on physical grounds the psychoacoustic percep-
tion of consonance and dissonance in music. One is based
on the “compactness” of the waveform of the combined
signal, while the other on the absence of “roughness” in-
duced by beats. In a previous detailed study of each ap-
proach for dyads, we found that none of the associated
model versions is fully satisfactory when faced to per-
ceptual data, while a surprisingly successful agreement is
found by combining the two approaches. In the present
contribution, we extend our analysis by exploring how
compactness models for dyads can be related to the early
arguments by G.B. Benedetti.

Keywords: consonance, dissonance, music, psychoa-
coustics

1. INTRODUCTION

Explaining on physical grounds the auditory perceptions
of consonance and dissonance (C&D) in music is an is-
sue still open to scientific debate, the actual functioning
of our hearing system being not fully understood. The
present work aims at extending our previous work on
dyads [1], by analyzing in some detail the early proposal
by G.B. Benedetti [2] and its successive developments.
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A brief historical review is useful to understand the
status of the art.

The commensurability (or coincidence) theory, pro-
posed by G. Galilei [3] likely building on arguments
by G.B. Benedetti [2] and others [4], is in fact based
on dyad’s waveform periodicity [1]. These ideas trig-
gered contributions and debates from other scientists and
musicians [4], including e.g. Euler [5]. In relation
to the discoveries about higher harmonics pioneered by
M. Mersenne, R. Descartes and J. Sauveur, another the-
ory was formulated by J.P. Rameau and P. Estève, relating
consonance to the largest presence of common harmon-
ics [6, 7]. For instance, the recent model of ref. [8] be-
longs to this category. The main criticism against these
two theories was the fact that the associated C&D indi-
cators are discontinuous functions of the frequency ratios.
Pioneering attempts to obtain experimentally a continuous
C&D function where carried out by F. Foderà [9].

Yet a different approach appeared in the fall of the
XIX century, when H. Helmholtz [10] suggested C&D to
be related to the absence of the roughness sensation due
to beats; the associated C&D indicators being naturally
continuous, this approach had many followers who fur-
ther refined them, including Plomp and Levelt [11] and
Hutchinson and Knopoff [12, 13].

These approaches, traditionally considered as alter-
native and competing, gave rise to the two categories of
explanations for C&D that we denote for short ”compact-
ness”, including the two sub-categories of ”periodicity”
and ”harmonicity”, and ”roughness”.

Focusing on dyads, in ref. [1] we performed a per-
ceptual test on the consonance of 38 dyads that can be
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formed using the just scale within two octaves, including
some microtonal intervals; the results, normalized to the
range [0, 1], are reported in Fig. 1.

As for the compactness approach, we proposed var-
ious indicators related to periodicity and harmonicity,
showing that they are essentially equivalent; we identified
among them the indicators that had been previously sug-
gested; and we proposed a method to extend compactness
models to the continuum. As a representative example,
the geometric mean continuum indicator CP

G is shown in
Fig. 1. As for the roughness approach, we improved the
associated indicator to include the beats of the mistuned
octave and fifth; the roughness indicator CR

α85
of Fig. 1 is

a representative example.
We then carried out a complete analysis to assess

whether a single refined model among the two categories
of compactness and roughness, or rather a combination
of them, provides a satisfactory explanation of the per-
ceptual data. We found that combined models, with sim-
ilar weight attributed to compactness and roughness, are
highly successful when compared to the perceptual obser-
vations, and perform significantly better than the original
models: this non trivial result demonstrates that compact-
ness and roughness are both fundamental ingredients of
an effective explanation of C&D [1]. As an example, the
model denoted by Ctot

G,α85
in Fig. 1 is obtained by combin-

ing with equal weights the former periodicity and rough-
ness models.

In this contribution, we extend our previous analy-
sis to the early estimator suggested by G.B. Benedetti [2]
and the indicators inspired to it, as the one suggested by
J. Tenney [14, 15].

2. BENEDETTI-INSPIRED INDICATORS

To establish our notation, we consider two tones (simple
or complex, in the latter case with a harmonic spectrum)
with frequencies f1 and f2, such that f1 ≤ f2. The lower
frequency f1 is fixed (e.g. at middle C, like in our test),
and the higher frequency varies, f2 = M/N f1, where M
and N are integer numbers. The ratio f2/f1 = M/N ≥ 1
can be written using the smallest possible integer numbers
by defining

n =
N

GCD[N,M ]
, m =

M

GCD[N,M ]
, (1)

where GCD stands for the greatest common divisor, so
that the integers m and n do not have prime factors in

common and
f2
f1

=
m

n
≥ 1 . (2)

The Benedetti height [2] is a dissonance estimator
given by

hB = nm , (3)

introduced to account for dyad’s rankings, in order of in-
creasing dissonance. It indeed accounts for rankings quite
successfully, but fails when one assumes it as an indica-
tor, giving absolute scores (indeed, it was not originally
proposed to accomplish this): considering for instance the
chromatic intervals within two octaves in the just scale,
the consonant dyads are all squeezed to low hB values,
while similarly dissonant dyads are spread in a large range
of hB values.

To overcome this problem, Tenney [14] proposed
to rather use a logarithmic scale, suggesting that the
Benedetti-Tenney height,

hBT = log2 nm , (4)

might be used as reasonable dissonance indicator (to be
called harmonic distance).

The Tenney choice of a logarithmic scale is arbitrary,
and one could rather imagine to exploit different mathe-
matical scalings. For instance, one may define the inverse
of nm as consonance indicator. To be even more general,
one might introduce the real and positive parameter α, and
consider as consonance indicator

IiB = 1/(nm)α . (5)

This is fully legitimate in the spirit of Benedetti’s pro-
posal, who exploited the product nm just in connection
with rankings, never attributing to it an interpretation as
absolute scores for dissonance.

In order to make our analysis quantitative, we have to
directly compare each model prediction with our test re-
sults [1] and evaluate the associated reduced chi square.
To do this, we have first to normalize to the range [0, 1]
the previously introduced indicators. Notice that normal-
ized consonance and dissonance indicators are comple-
mentary to 1. In particular, the normalized Benedetti and
Benedetti-Tenney consonance indicators are

ĨX = 1− hX − hX
min

hX
max − hX

min

, X = B,BT , (6)

where hX
min and hX

max are the minimum and maximum
values taken by hX within some set of selected dyads.
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Figure 1. Results of the test on the consonance of 38 dyads [1]; the dashed and dot-dashed curves show the
predictions of the representative periodicity model CP

G and of the representative roughness model CR
α85

. The
solid curve is the model Ctot

G,α85
, obtained by combining the previous two with equal weights.

The indicator IiB is instead associated to the follow-
ing normalized consonance indicator, which we call in-
verted Benedetti indicator for short,

ĨiB =
IiB − IiBmin

IiBmax − IiBmin

, (7)

where IiBmin and IiBmax are the minimum and maximum val-
ues taken by IiB for some set of chosen dyads.

Here we take the 38 dyads within two octaves stud-
ied in ref. [1]. The value ĨB,BT,iB = 1 is thus reached
only by the octave, f2/f1 = 2. A good model is ex-
pected to have a reduced chi square smaller than or about
1. The value of the reduced chi square for the Benedetti
and Benedetti-Tenney consonance indicators turn out to
be respectively equal to 20.5 and 1.8. The latter value, to-
gether with the reduced chi square of ĨiB as a function of
α, is shown in Fig. 2. We see that for 0.3 < α < 0.6, ĨiB

performs better than ĨTB ; in particular, ĨiB has a min-
imum at α ≈ 0.4, where the reduced chi square equals
0.7.

We now discuss how the above Benedetti-inspired
indicators are related to the periodicity and harmonicity
models discussed in ref. [1].

3. COMPACTNESS MODELS

Periodicity models relate the perception of C&D to the
compactness of the waveform of the dyadic signal, ac-
cording to the criterion that the shorter is the period of the
missing fundamental (i.e. the fundamental bass in music
theory) with respect to the periods of the two tones, the
more the interval is consonant. Harmonicity models are
instead based on the compactness of the dyad’s harmonic
structure, that is on the hypothesis that consonance in-
creases with the number of coincident harmonics between
the two tones.

As argued in ref. [1], these two model categories give
practically the same indicators, so that they can be consid-
ered two subcategories of the compactness approach. The
basic result of the latter is that the most consonant inter-
vals are those whose frequency ratios involve the smallest
integer numbers, all other intervals sharing more or less
the same degree of dissonance.

3.1 Periodicity models

The frequency of the dyad’s missing fundamental, f0, is

f0 =
f1
n

=
f2
m

. (8)
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Figure 2. Reduced chi square as a function of α for the inverse Benedetti model ĨiB (iB, solid line). From top
to bottom, we show for comparison the reduced chi square for the models by Euler [5] and Benedetti-Tenney
(BT), the Galilei inspired ĨP2 model and the geometric mean model ĨPG (which is equal to ĨiB with α = 0.5).

The basic idea of the periodicity approach is that the
higher is f0 with respect to the composing frequencies f1
and f2, the higher is the degree of consonance. Since there
are various ways to establish this comparison, there are ac-
cordingly many periodicity indicators [1] .

Comparing f0 with f1 and f2, one obtains as period-
icity indicators respectively

IP1 =
f0
f1

=
1

n
, IP2 =

f0
f2

=
1

m
. (9)

The second indicator is better than the first in accounting
for the test results, and it corresponds to the fraction of
”concordant pulses” proposed in nuce as a consonance in-
dicator by G. Galilei [3].

Other indicators can be obtained by considering mean
values of f1 and f2. For the arithmetic, geometric and
harmonic means, fA = (f1 + f2)/2, fG =

√
f1f2 and

fH = f2
A/fG, we have

IPA =
f0
fA

=
2

n+m
, IPG =

f0
fG

=
1√
nm

,

IPH =
f0
fH

=
n+m

2nm
. (10)

It can be seen that these three indicators give quite sim-
ilar predictions, intermediate with respect to those of IP1
and IP2 . Notice that IPG is equal to the inverted Benedetti
indicator IiB with α = 0.5.

More in general, any function that can be written as
a combination of the indicators above, can be seen as a

consonance indicator related to periodicity. A consonance
indicator based on periodicity is thus some function that
increases when m and n are as small as possible.

To study the reduced chi square for the above period-
icity indicators, we first normalize them to the range [0, 1],

ĨPX(f2/f1) = IPX(f2/f1)/I
P
X(2) , (11)

where X = 1, 2, A,G,H . As an example, the reduced
chi square of the normalized consonance indicators asso-
ciated to ĨP2 and ĨPG are respectively equal to 1.3 and 1.1,
and they are shown in Fig. 2.

3.2 Harmonicity models

Let us denote the harmonic series of f1 and f2 with
{n1f1} and {n2f2}, where n1 and n2 are integers, start-
ing from 1. A coincidence in the harmonics happens if the
relation n1f1 = n2f2 is fulfilled for some n1 and n2. In
the case it is, the lowest coincidence of the harmonics hap-
pens for the smallest possible values of n1 and n2, to be
denoted by nc1

1 and nc1
2 . Since the relation above implies

n1

n2
=

f2
f1

=
m

n
, (12)

where m and n are already as small as possible, the first
coincidence happens for nc1

1 = m and nc1
2 = n. The sec-

ond coincidence happens for nc2
1 = 2m and nc2

2 = 2n,
the third for nc3

1 = 3m and nc3
2 = 3n, and so on.

A consonance indicator based on harmonicity is thus
some function that increases when m and n are as small
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as possible. As this is precisely the same request as in
the case of periodicity indicators, the two approaches are
basically equivalent.

A couple of explicit examples of harmonicity indica-
tors are for instance the functions

1

2

(
1

nc1
1

+
1

nc1
2

)
=

m+ n

2mn
,

1

nc1
1

1

nc1
2

=
1

mn
, (13)

where the first is equal to the harmonic mean periodic-
ity indicator, IPH , while the second is equal to the inverse
Benedetti indicator IiB with α = 1.

One might guess that the similarity of the harmonic
content of the two sounds, hence the associated indicator,
should also depend on the amplitudes of the harmonics,
namely on timbre. Denoting the weight function for the
contribution of the ni-th harmonics by wni

with i = 1, 2,
one can build an indicator along these lines as

IHw =
∑

n1,n2=1,2,...

wn1 wn2 δ(n1f1 − n2f2) , (14)

where δ is the Dirac delta function. In particular, using
wni

= 1/nα
i , where α is a positive real number, one has

IHα =
1

(mn)α

(
1 +

1

4α
+

1

9α
+ ...

)
. (15)

The numerical factor in parenthesis disappears upon nor-
malization, so that this harmonicity indicator turns out to
be precisely equal to the normalized inverse Benedetti in-
dicator, ĨHα = ĨiB .

3.3 Extension to continuum

We now discuss how to extend the compactness indica-
tors to the ”continuum” (namely to non integer numbers
N and M ), implementing the effect of the frequency dis-
crimination limen (DL) [16] of the hearing system [1].

Suppose that m and n take all integer values from 1
up to 50, for instance. We select the k ratios of the type
m/n falling in the interval [1, 4], and we denote them by
xi, with i = 1, .., k. The associated normalized conso-
nance indicator, ĨPX(xi), is thus defined only for the k dis-
crete values xi. Our aim is to extend the indicator to any
value of the x domain in the interval [0, 4], thus turning
it more ”physical”. The ear has a DL of about 3 Hz at
the frequency of middle C (or C4), which increases up to
6 Hz two octaves above [16]. The effect of the DL can
be implemented by smoothing the peaks with a Gaussian
characterized by a standard deviation equal to the DL at

frequency f2, σ = fDL(f2)/f1. The DL turns out to be
about 1/30 of the critical bandwidth (CB) [17], as derived
by Zwicker et al. [16]. As the CB is frequency depen-
dent, we anchor for definiteness f1 to C4. The extension
to the continuum can be made by calculating the distance
|x − xi|, for all xi such that |x − xi| < 2σ(x), and eval-
uating the corresponding value for the periodicity conso-
nance indicator CP

X(x), defined as

CP
X(x) = Maxi Ĩ

P
X(xi) e

− (x−xi)
2

2 σ(x)2 . (16)

The result is a continuous function, with smoothed peaks
such that, within (beyond) about 3 (6) Hz from a peak,
the consonance function does not (might) change signifi-
cantly.

As an example, the geometric mean continuum indi-
cator CP

G of Fig. 1 has been obtained following this pro-
cedure.

4. THE COMBINED EFFECT OF COMPACTNESS
AND ROUGHNESS

As discussed in ref. [1], despite the many good features,
roughness models do not reproduce the data points in a
satisfactory way. It seems that some other ingredient has
to be introduced: indeed, the focus of roughness models
is to assign penalties, rather than prizes. On the contrary,
the compactness models provide essentially prizes for the
simplicity of the waveform of the signal, but do not as-
sign increasing penalties to increasingly non simple ra-
tios of dyad’s frequencies. A complete model of C&D
should both give prizes for the compactness of the signal
and penalties for the presence of beats.

We thus proposed [1] to directly combine the two ap-
proaches, simply summing two representative indicators
in each category. The combined consonance indicator is
given by the weighted sum of a compactness model, of the
periodicity or harmonicity type, and a roughness one:

Ctot
X,Y =

F C
P/H
X + (1− F )CR

Y

NX,Y
, (17)

where X and Y specify the particular compactness and
roughness models respectively, F is the fractional con-
tribution of periodicty/harmonicity with respect to rough-
ness, and NX,Y is a normalization factor. For large (small)
values of F , the combined model is dominated by the
compactness (roughness) constituent model. Of course it
is not obvious that this automatically corresponds to a bet-
ter model than its constituents; only the comparison with
the perceptual data can reveal whether this is the case.
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We considered all possible combinations of the com-
pactness models, with the best performing roughness
models. In all the considered cases, it turns out that: the
reduced chi square of the combined model has a minimum
which is significantly smaller than the chi square of the
constituent models; the inclusion of the mistuned octave
and fifth reproduces the data slightly better, and is charac-
terized by a lower value of F . The more pronounced min-
imum is found for the combined models having CP

G , CP
A

and CP
2 as constituent models, together with CR

α85
. For

these three best performing models, including the effect of
the mistuned octave and fifth, the minimum of the reduced
chi square is found at F ≈ 58% and is slightly smaller
than 0.3, signaling an impressive agreement between such
theoretical models and perceptual observations.

In particular, we recall that CP
G is precisely the in-

verse Benedetti indicator with α = 0.5; Fig. 1 shows the
combination of CP

G and CR
α85

with equal weights, that is
the combination with F = 0.5. The agreement with the
perceptual data of our test is evident [1].

5. CONCLUSIONS

In this contribution we reviewed the results of our previ-
ous work [1] where we showed that combining the com-
pactness and roughness approaches allows to obtain a phe-
nomenologically satisfactory explanation of C&D based
on physical grounds, that is based on the features asso-
ciated to compactness (of the period or of the harmonic
spectrum) and roughness present in the dyadic waveform.

In particular, we discussed here how the early pro-
posal of the Benedetti’s estimator [2] can be used to con-
struct consonance indicators, including the one suggested
by J. Tenney [14,15], and how these indicators are related
to those associated to the compactness approach.
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