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ABSTRACT

Sonic black holes (ABHs) at duct terminations slow down
impinging waves by means of a set of rings separated by
cavities, whose inner radii diminish following a power
law profile. Energy tends to concentrate at the end of the
waveguide and is dissipated by visco-thermal losses, re-
sulting in a very low reflection coefficient. This anechoic
behavior is governed by a modified Webster equation that
takes into account the wave propagation inside the duct
of variable cross section and wall admittance. In this pa-
per it is shown that the generalised Webster equation can
be transformed into a Helmholtz-type equation with non-
constant wave number. We solve its weak form by ex-
panding the solution in terms of Gaussian functions and
show how the modal distribution within the SBH affects
the occurrence and disappearance of peaks and dips in the
SBH reflection coefficient.

Keywords: sonic black holes, slow sound, waveguide,
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1. INTRODUCTION

Sonic black holes (SBHs) at duct terminations were origi-
nally proposed in [1] and consist of waveguides that slow
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down propagating acoustic waves in such a way that, in an
ideal scenario, these would never reach the end of the tube
resulting in zero reflection. According to [1], this could
be achieved by placing a very large number of rings in
the duct, separated by cavities, such that their inner radius
decays from that of the uniform duct to zero at the duct
termination, following a power-law profile. However, in
practice the number of rings that can be built is limited
and therefore most efforts to date have been devoted to
describing the performance of more realistic SBHs, either
by the transfer matrix method (TMM) (see e.g., [2–4], by
simulations with the finite element method (FEM) [5–7]
or by semi-analytical models [8].

In this work we deal with the theoretical SBH in [1],
which deserves further exploration as several of its fea-
tures have not yet been analyzed in detail. We show that
the original Webster equation governing the SBH acous-
tics can be transformed into a Helmholtz equation with
spatially varying wavenumber for a locally scaled pres-
sure, and then derive its variational formulation as well
as an associated eigenvalue problem to compute the SBH
modes. The variational problems are solved by expanding
the scaled pressure in terms of Gaussain functions. The
singularity at the duct termination is avoided by consider-
ing there a residual rigid cross-section, characterised by a
residual radius, which is shown to play the same role as
the residual thickness in beams and plates with acoustic
holes (ABHs) [9–12]. An analysis of the modes within the
SBH depending on the residual radius reveals the ultimate
reason for the occurrence and disappearance of peaks and
dips in the reflection coefficient of the SBH.
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2. STATEMENT OF THE PROBLEM

2.1 Governing equation inside a SBH

As discussed in [1], plane wave propagation inside a ra-
dially symmetric waveguide of section S(x), local radius
r(x), and wall impedance Y (x) is governed by the gener-
alized Webster equation,
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where p̂(x) is the acoustic pressure, k0 = ω/c0 the
wavenumber, and ω and c0 respectively stand for the an-
gular frequency and the speed of sound. Z0 = ρ0c0 is the
air characteristic impedance with ρ0 being the air density.

Introducing the locally scaled pressure ϕ = S1/2p̂,
we can transform Eqn. (1) into a Helmholtz equation,
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with spatially varying wavenumber,

κ2 = k20 + iZ0
2Y

r
k0 −

1

2

S′′

S
+

1

4

S′2

S2
. (3)

Considering the wall admittance for the ideal
ring/cavity SBH (see [1, 2]),

Y (x) = −i
k0
Z0

R2 − r2

2r
, (4)

and the cross section S(x) = πr(x)2, after some manipu-
lations the wavenumber squared simplifies to

κ2 = k20
R2

r2
− r′′

r
. (5)

2.2 Strong and weak formulation of the sonic black
hole problem in a finite duct termination

We want to solve the problem depicted in Fig. 2 in which
a plane wave propagating in a semi-infinite duct im-
pinges on the SBH from the left. To avoid the singular-
ity of Eqn. (1) at the origin, we consider that r(x) never
becomes zero and that there is a residual cross section
at the SBH termination with residual radius r0 ≡ r(0).
This avoids the need of introducing the somewhat artifi-
cial length imperfection in [1]. The problem is that of
finding ϕ(x) such that,

− d2ϕ

dx2
− k20ϕ = 0, ∀x ∈ (−∞,−L], (6a)

− d2ϕ

dx2
− κ2(x)ϕ = 0, ∀x ∈ [−L, 0], (6b)

Figure 1. Schematic of the SBH problem. A wave
propagating form the left enters a SBH where its
slows down while its amplitude increases and its
wavelength decreases. The reflection coefficient R
characterizes its efficiency.

where L is the length of the SBH. These equations are
supplemented with the following boundary conditions: a
rigid surface at x = 0, S0 = πr20 , and continuity of the
acoustic pressure and the acoustic particle velocity at x =
−L.

The solution to Eqn. (6a) is ϕ(x) = e−ik0x +Reik0x

where R is the unknown reflection coefficient of the SBH.
To solve Eqn. (6b), we first establish its variational form.
As usual, this is found by multiplying Eqn. (6b) by a test
function ψ∗ (∗ stands for the complex conjugate), integrat-
ing over the computational domain, and then integrating
by parts to have the same order for the derivatives of the
unknown scaled pressure ϕ and the test function ψ∗. This
yields,∫ 0
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dx

dϕ

dx
dx−
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ik0Lψ∗(−L). (7)

In addition, to compute the SBH modes we can de-
rive a variational eigenvalue problem by splitting κ2 into
its frequency and non-frequency dependent terms. We ob-
tain,
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We solve Eqn. (7) and Eqn. (8) by expanding ψ∗ and
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Figure 2. SBH mode shapes for (a) r0 = 0.01 m and
(b) r0 = 0.001 m. Damping value: η = 0.05.

ϕ as a combination of basis functions,

ψ∗(x) =

n∑
i=1

b∗iφi(x), ϕ(x) =

n∑
i=1

aiφi(x), (9)

where we choose φi(x) to be Gaussians as done in sev-
eral of the authors previous works on ABHs for beams
and plates [11–15]. Inserting Eqn. (9) into Eqn. (7)
and Eqn. (8) we can obtain the expansion coefficients ai
for the scaled pressure ϕ and the eigenpairs of the prob-
lem.

3. SIMULATIONS

We consider a SBH of length L = 1 m, input radius R =
0.23 m, and order m = 2. We take a sound speed c0 =
ca(1 + iη) with ca = 343 m/s and η = 0.05, which is a
rough approximation to thermoviscous losses. The cutoff
frequency of the duct is fc = 1.84ca/2πR = 445 Hz, so
we restrict our analysis to the range [0, 400] Hz.

To begin with, let us focus on the distribution and
shape of the modes within the SBH and their dependence
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Figure 3. Absolute value of the reflection coefficient,
|R|, for various values of the residual radius r0.

on the residual radius, r0. As observed in Fig. 2, the
modes tend to concentrate strongly towards the end of the
SBH. If we compare Fig. 2a for r0 = 0.01 m and Fig. 2b
for r0 = 0.001 m, it is seen that the smaller the resid-
ual radius the higher the concentration and the greater the
number of modes in the frequency range of analysis. Al-
though not shown in the figure, it can be checked that in-
creasing the damping, η, has a strong effect on the higher
order modes of the SBH, i.e., those in Fig. 2b would be
more affected than those in Fig. 2a.

The increase and concentration of modes as r0 de-
creases, and the effect of damping on the higher-order
modes are ultimately responsible for the appearance and
disappearance of peaks in the absolute value of the SBH
reflection coefficient |R|. The former is seen in Fig. 3,
which shows |R| for r0 = {0.01, 0.001, 0.0001} m.
Strong oscillations can be identified for the largest resid-
ual radius r0 = 0.01 m, while they progressively decrease
as r0 becomes smaller. For r0 = 0.0001 only minor peaks
and dips can be identified for the lower frequencies of the
spectrum.

4. CONCLUSIONS

In this work we have shown that the propagation of acous-
tic waves inside a SBH can be described by a Helmholtz
equation with spatially varying wavenumber for a locally
scaled pressure. We have derived the variational form of
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this equation and solve it by expanding the scaled pres-
sure in terms of a Gaussian basis. We have also intro-
duced a variational eigenvalue problem to calculate the
SBH modes.

Simulations have revealed that the number of modes
and their amplitude increase and concentrate towards the
end of the SBH as we decrease the residual radius. Damp-
ing also has a strong effect on the higher order modes.
This explains why the peaks and dips of the SBH reflec-
tion coefficient tend to disappear at high frequencies for
small residual radii.
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