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ABSTRACT

The acoustic conservation equations are a subset of the
compressible flow equations and describe the generation
and propagation of acoustic waves by the two acoustic
primary variables: acoustic pressure and acoustic parti-
cle velocity. Therefore, the equations (an exact refor-
mulation of the APE-2) can be natively used in the con-
text of hybrid aeroacoustic. In order to achieve a sta-
ble finite element (FE) approximation by the continuous
Galerkin method, these two physical quantities have to be
defined in different Sobolev spaces to fulfill the Ladyzhen-
skaya–Babuška–Brezzi condition. Another approach is to
apply the Discontinuous Galerkin (DG) method, which
enforces coupling between elements via numerical fluxes
in surface integrals only and thus has advantages regard-
ing computational efficiency. We present a high-order DG
formulation that yields optimal spatial and temporal con-
vergence rates and provide implementational details in the
context of hybrid aeroacoustics. Furthermore, the appli-
cation to an aeroacoustic test case demonstrates the devel-
oped DG approach’s suitability for aeroacoustic computa-
tions.
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1. INTRODUCTION

We propose a hybrid aeroacoustic solver for low Mach
numbers that is fully based on DG discretization. The op-
timal rates of convergence for used incompressible flow
solver ExaDG has been shown in [1]. The solver renders
fast and memory efficient [2] by using matrix-free opera-
tor evaluations [3].

The acoustic DG solver discussed within this work
uses the same matrix-free implementations provided
by deal.II [4], and will be publically available
through ExaDG.

We made several design decisions to avoid usual bot-
tlenecks: Input/Output (I/O) operations should be kept to
a minimum in high-performance computing [5]. There-
fore, we solve fluid and acoustic simulations side by side
and skip the expensive I/O. This methodology has another
advantage: Back-coupling from acoustic to fluid can be
easily considered using the feedback term proposed in [6].
Acoustic scales are much larger than fluid scales. Thus,
we use a much coarser mesh for acoustic, also known as
the grid-splitting technique [7]–[11]. Using much coarser
meshes for acoustic than fluid requires conservative in-
terpolation of acoustic sources from the fluid grid to the
acoustic grid. To avoid expensive grid intersection oper-
ations, we use a conservative cell-volume weighted inter-
polation methodology [12].

Within this work, we show the convergence rates for
the acoustic solver and apply the acoustic solver in the
context of hybrid aeroacoustics.
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2. GOVERNING EQUATIONS

Within this work we are solving the acosutic conservation
equations

∂u

∂t
+

1

ρ
∇p = 0 on Ω, (1)

∂p

∂t
+ ρc2∇ · u = c2f = −∂pcfd

∂t
on Ω, (2)

with suitable boundary conditions (BCs)

p = gp on ∂ΩD
p , (3)

u · n = 0 on ∂Ωref , (4)

ρcu · n = p on ∂Ωabc. (5)

Here, the acoustic pressure is p, the acoustic particle ve-
locity is u, the speed of sound is c, and ρ is the mean
density of the fluid. It is possible to prescribe pres-
sure Dirichlet boundary conditions Eqn. (3) (BCs), sound
hard BCs Eqn. (4), and first oder absorbing BCs Eqn. (5)
(ABCs) [13]. A body force term f introduces acoustic
sources in the equations. In the context of aeroacoustic
these source terms are defined as the temporal derivative
of the incompressible hydrodynamic pressure pcfd, which
is obtained by solving the incompressible Navier–Stokes
equations, see [7], [14]. The convected form of the equa-
tions under consideration can be seen as an exact reformu-
lation of the Acoustic Perturbation Equations (APE-2) [7]
which has been introduced by [14]. Within this work, we
completely neglect convection; in this sense, we consider
Ribner’s dilatation equation [15] in the first order form.

3. NOTATION

A physical domain Ω is approximated by a computational
domain Ωh. The boundary of the computational domain
is Γh. The computational domain is subdivided into fi-
nite elements with Lagrange shape functions of order k.
Integration is performed by means of Legendre–Gauss–
Lobatto quadrature with nq = k+1 integration points. In-
formation inside an element is denoted with superscript−;
information in adjacent elements is denoted with super-
script +. If no superscript is provided, we implicitly as-
sume that information is defined inside elements.

The acoustic pressure p and acoustic particle veloc-
ity u is defined in the L2 space, and thus, its approxima-
tion is continuous inside elements and discontinuous be-
tween elements. On faces, elements are coupled with nu-
merical fluxes which are indicated by superscript ∗. Given

an arbitrary quantity b, the averaging operator {{b}} =
(b−+b+)/2, jump operator [b] = b−− b+, and normal jump
operator JbK = b−⊗n− + b+⊗n+ are defined using the
notation introduced in [16], [17].

Integrals are abbreviated by (b, b)Ωe
=
∫

Ωe
b · b dΩ

and (b, b)∂Ωe
=
∫
∂Ωe

b · b dΓ, with inner products indi-
cated by ·.

4. SPATIAL DISCRETIZATION

The semi-discrete system of equations is obtained by mul-
tiplication with corresponding test functions qh and wh
and two integraions by parts(

qh,
1

c2
∂ph
∂t

)
Ωe

+ (qh, ρ∇ · uh)Ωe

− (qhn, ρ(u∗
h − uh))∂Ωe

= (qh, f)Ωe
,

(6)

(
wh, ρ

∂uh
∂t

)
Ωe

+ (wh,∇ph)Ωe

− (wh · n, p∗h − ph)∂Ωe
= 0.

(7)

We use the well-known Lax-Friedrichs fluxes

p∗h = {{ph}}+ τ JuhK , (8)
u∗
h = {{uh}}+ γ JphK , (9)

with penalty parameters that are only defined on the un-
terlying materials properties τ = ρc

2 and γ = 1
2ρc [18]–

[21]. Note that we apply BCs weakly through the mirror
principle, cf. [22].

5. TEMPORAL DISCRETIZATION

Governing equations in matrix notation read

M
∂Uh
∂t

+ KUh = Fh, (10)

with matrices M and K as well as global DoF vectors
containing pressure and velocity contributionsUh and the
source terms Fh. This way we can write the J th order
Backward Differentiation Formula (BDF) time integraion
scheme as

M
γ0U

n+1 +
∑J−1
i=0 αiU

n−i

∆t
+ KUn+1= F n+1

h , (11)

with the BDF coefficients γ0 and α; the coefficients for
adaptive time-stepping can be found in [23].
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Figure 1. Spatial rates of convergence for polynomial degree k. Optimal rates k + 1 are obtained.

6. ACOUSTIC CONVERGENCE STUDY

To be able to benchmark the discretizations agains an
analytical solution we are using the test case of a vi-
brating membrane. This test case was also considered
amongst others in [19], [24], [25]. In two dimension and
with c = 1ms−1 and ρ = 1kgm−3 it reads

pana = cos(
√

2πt) sin(πx1) sin(πx2), (12)

uana = − sin(
√

2πt)√
2

(
cos(πx1) sin(πx2)
cos(πx2) sin(πx1)

)
. (13)

We are comparing absolute L2 errors for pressure

εL2,abs
p =

√∫
Ω

(ph − pana)2 dΩ, (14)

and similarely for velocity after t = 1s.
The computational domain is a square Ωh =

[0m, 1m]2. Within the investigation we use homogenous
pressure Dirichlet BCs. For the spatial convergence study
we are using a time step based on the CFL condition

∆t =
Cr

k1.5

h

c
, (15)

where h is the minimal element edge length and the expo-
nent 1.5 is motivated by [26]. The Courant number is cho-
sen Cr = 0.01 in combination with time integration or-
der J = 4. Corresponding results are plotted in Fig. 1 and
we can observe optimal spatial rates of convergence k+1.

For the temporal convergence study we are using
polynomial degree k = 7 and h = 0.125m. As shown
in Fig. 2 we obtain minimally optimal temoporal rates of
convergence J . For the velocity with BDF1 and the pres-
sure with BDF2 we observe superconvergence. Neverthe-
less, looking at the combination of pressure and velocity
we obtain optimal rates of conergence. Superconvergence
is not expected and seems to be related to the test case
since we could not observe superconvergence in other test
cases.

7. AEROACOUSTIC VOLUME COUPLING

We are considering no convection and no back-coupling of
the acoustic to the fluid. Therefore, the coupling reduces
to two operations: computation of the source term and
interpolation to the acoustic grid.

For the computation of the temporal derivative of the
hydrodynamic pressure we are using a J th order BDF
scheme

∂pcfd

∂t
≈
γ0p

n+1
h,cfd −

∑J−1
i=0 αip

n−i
h,cfd

∆t
, (16)

This operation is performed on the fluid grid. Within this
work J = 2.

As shown in multiple publications, see, e.g., [27],
[28], a consvervative interpolation is key in computational
aeroacoustic with grid-splitting.

4175



10th Convention of the European Acoustics Association
Turin, Italy • 11th – 15th September 2023 • Politecnico di Torino

100

Cr

10−8

10−6

10−4

10−2

ε
L

2,
ab

s
p

∼ ∆t
1

∼ ∆t
3

100

Cr

10−5

10−4

10−3

10−2

ε
L

2,
ab

s
u

∼ ∆t
2

J = 1 J = 2

Figure 2. Temporal rates of convergence for time integration scheme. In some cases we unexpectedly obsever
super-convergence but we have at least the expected optimal rates of order J . Optimal rates J are obtained.

Within our solver we generalized the fully con-
servative cell-volume weight interpolation methodology
from [12] to high-orders DG schemes of the CFD solver.
Note that this interpolation scheme is particularily effi-
cient since no grid intersections have to be computed. The
integration and interpolation of the source term is per-
formed as follows:

1. Compute and integrate source term on fluid grid.

2. Fetch DoF positions of fluid grid.

3. Search corresponding cells and reference points on
the acoustic grid ξ.

4. At every ξ: Evaluate shape functions of locally
relevant acoustic DoFs, multiply by corresponding
value of the integrated source term from the fluid
grid, and assemble to global acoustic source vec-
tor Fh.

In our implementations this procedure works for arbitrary
orders of fluid and acoustic simulations.

8. NUMERICAL RESULTS

To demonstrate the solver in the context of aeroacoustic
we are considering a cylinder of radius r = 0.01m in a
cross-flow with velocity ūcfd = (10, 0)Tms−1. The ma-
terial parameters are ν = 0.001m2s−1, c = 343.5ms−1,

ρ = 1.204kgm−3. The CFD domain is a rectangle, which
spans from (−0.5m,−0.2m)T × (0.5m, 0.2m)T , with a
cylindrical hole and consists of 448 elements with poly-
nomial degree 4 for the velocity and 3 for the pressure
(29568 DoFs). At the left side inflow boundary conditions
with the constant velocity ūcfd are used. At the right side
pressure outflow boundary consditions are prescribed, and
at top and bottom symmetric BCs are used. The acoustic
domain is a shell with outer radius R = 10m and innter
radius r. Inner boundaries are modeled sound hard and
at outer boundaries first order ABCs are used. Differ-
ent configurations for the spatial discretization are listed
in Tab. 1. The time step size is chosen adaptively with a

Table 1. Different spatial discretizations of acoustic.
C is used to distinguis between configurations.

C k elements DoFs
1 2 84 2268
2 3 84 4032
3 3 324 15552
4 3 5124 245952
5 3 20484 983232

Courant number of Cr = 0.8 for the CFD and is limited
by a maximal time step size of ∆t = 12.5 × 10−6s. The
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Figure 3. Acoustic pressure field of cylinder in
cross-flow at t = 0.446s for configuration C4.

acoustic pressure field is depicted in Fig. 3 for configura-
tion C4.

Fig. 4 shows the spectrum of the acoustic sound pres-
sure level (SPL)

SPL = 20 log10

(
p

p0

)
, (17)

at x = (0, 4m)T , with p0 = 20 × 10−6Pa. The same
frequencies at which modes occur are predicted indepen-
dent of the discretization. The main difference is in the
obtained amplitudes; a finer discretization yields greater
amplitudes for high frequencies since less numerical dis-
sipation is present. On the other hand, the SPL at the shed-
ding frequency (100Hz) is overestimated by the coarse
discretization. Note that C4 and C5 yield the same results,
indicating that the acoustic solver converged to the opti-
mal values. Therefore, better results can only be expected
for a finer CFD simulation. It sticks out that obtained re-
sults are reasonable, even for very coarse discretizations.

9. CONCLUSION

We presented a hybrid aeroacoustic solver for low Mach
numbers with high-performance computing in mind. Used
incompressible flow solver shows optimal rates of conver-
gence [1]. The spatial discretization of the acoustic solver
show expected optimal rates of convergence in space. For
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Figure 4. Simulation results for different configura-
tions listed in Tab. 1.

the temporal discretization, we also obtain optimal con-
vergence rates (in rare cases, for the vibrating membrane
test case, we even see superconvergence). Both solvers
employ high-order DG methods. The volume coupling
between a fine fluid grid and a coarser acoustic grid is per-
formed using a fully conservative cell-volume weighted
interpolation methodology, which avoids any computation
of grid intersections and works for arbitrary polynomial
degrees of both, the CFD solver as well as the acoustic
solver. Applying the solver to the test case of a cylinder
in a cross-flow yields good results already for extremely
coarse discretizations of the acoustic.
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and M. Kaltenbacher, “Efficient numerical
simulation of the human voice,” Elektrotech-
nik & Informationstechnik, vol. 138, no. 3,
pp. 219–228, 2021. DOI: 10 . 1007 /
s00502-021-00886-1.

[12] M. Kaltenbacher, M. Escobar, S. Becker, and
I. Ali, “Numerical simulation of flow-induced
noise using LES/SAS and Lighthill’s acoustic
analogy,” International Journal for Numerical
Methods in Fluids, n/a–n/a, 2009. DOI: 10.
1002/fld.2123.

[13] B. Engquist and A. Majda, “Absorbing bound-
ary conditions for the numerical simulation of

4178



10th Convention of the European Acoustics Association
Turin, Italy • 11th – 15th September 2023 • Politecnico di Torino

waves,” Mathematics of Computation, vol. 31,
no. 139, pp. 629–651, 1977. DOI: 10.1090/
s0025-5718-1977-0436612-4.

[14] R. Ewert and W. Schröder, “Acoustic pertur-
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