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ABSTRACT

The imaging of aeroacoustic fields by means of micro-
phone arrays is a complex task due to the 3D nature of
volumetric sources in turbulent flow. Rather than mesh-
ing the full space for the identification of aeroacousti-
cal source distributions, the aim of this work is to recon-
struct the acoustic sound fields generated by an equivalent
set of point sources with free coordinates, called ”acous-
tic sonons”. Their radiation is expected to reproduce
the same acoustical properties as the measured acousti-
cal field, such as its pressure level, its directivity, and its
spatial coherence by retrieving phase information. It is
shown that the proposed concept of sonons, while being
very flexible, effectively provides equivalent representa-
tions for a large variety of source distributions, whether
they are initially composed of monopoles, dipoles, or
quadrupoles, and whether these are spatially coherent or
not. Additionally, source position priors can be taken into
account in sonons generation, which improves localiza-
tion ability. The problem is solved within a probabilistic
framework, by means of a hierarchical Bayesian model
inferred witha dedicated Markov chain Monte Carlo algo-
rithm. The performance of the method is evaluated on two
analytical test cases composed of the radiation of elemen-
tary sources and of a trailing edge.
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1. INTRODUCTION

Acoustic source reconstruction has played a significant
role in the aeroacoustic domain throughout the last several
years. The measurement of aerodynamic noise presents
additional challenges, such as more complicated physi-
cal phenomena involved and large studied objects in wind
tunnels, all of which limit the usage of standard methods.
Most approaches, like conventional beamforming (CBF),
assume that potential sources are located at a finite col-
lection of candidate points, which are used to estimate the
source intensity [1]. A well-known issue with this is the
basis mismatch, which occurs when the grid does not rep-
resent the real position of the sources; this can cause se-
vere mistakes in real applications. Moreover, in 3D, the
number of grid points increases dramatically, sometimes
making the computation time of grid-based methods un-
acceptable.

To address these limitations, alternative methods, like
gridless localization algorithms, have been proposed. Xe-
naki et al. [2] developed an 1D gridless compressive
beamforming based on the sparsity hypothesis, which was
then validated in 2D [3]. Chardon et al. [4] recently pro-
posed a three-dimensional gridless method by solving a
Beurling LASSO problem. However, these methods have
the limitation that the sparse condition cannot always be
satisfied. As a traditional optimization method, the idea
of applying global optimization to sound source localiza-
tion has also been exploited in recent years. Malgoezar
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et al. [5] demonstrated the Differential Evolution method,
which can reliably identify incoherent sources. Later, Wei
et al. [6] extended this method to 3D with a Partial Swarm
Optimization algorithm. Some new papers have been
published that provide alternative optimization strategies,
such as the state transition algorithm in reverberant en-
vironments [7] or the signal subspace approach [8]. The
fundamental shortcoming of these techniques is that they
did not address the identification of correlated sources.
In addition, with the development of AI, machine learn-
ing techniques are being applied to gridless sound source
localization problems [9–11]. These methods inevitably
suffer from an enormous training phase, which hinders
their immediate use.

This contribution presents a novel solution. Instead
of performing full-space meshing for the identification of
aeroacoustic sources, the aim is to reconstruct the acous-
tic sound field generated by an equivalent set of point
sources with free coordinates, which are not located on
any predefined grid. Their radiation is expected to repro-
duce the same acoustic properties as the measured acous-
tic field. The statistical equivalence concept proposed for
these sources is very flexible and can be effectively used to
provide the equivalent representations for a diverse range
of source distributions, whether they are initially com-
posed of monopoles, dipoles, or quadrupoles, and with or
without spatial coherence.

Moreover, in spite of the various approaches that have
been proposed in the literature, the reconstruction of the
directivity of sound fields has rarely been studied directly,
which requires a correct estimation of the source phase as
well as the mutual correlation of the sources. As far as
we know, there has been few attempts to address these
issues [12], which our equivalent source model will be
shown to easily handle.

In what follows, the new gridless source localization
model is presented together with its algorithm based on
the Bayesian framework. First, a Bayesian probabilistic
model is developed [13, 14], and then a Markov chain
Monte Carlo (MCMC) sampler of the posterior probabil-
ity density function (PDF) is introduced. Finally, the ap-
plication is demonstrated on simulated data.

2. PROBABILISTIC MODEL

2.1 ”Sonon” definition

The objective is to represent the acoustic field by sets
of acoustic monopoles, hereafter referred to as “sonons”.

The name ”sonon” is inspired by an analogy with the par-
ticles found in an atom such as a proton to represent the
unit particle of sound. The sonons are allowed to explore
freely the 3D space and are not constrained to any prede-
fined grid. Each sonon is fundamentally characterized by
its position and its amplitude.

2.2 Radiation equation

Suppose that the acoustic signal radiated by N sonons is
received by an array containing M microphones, and the
signal is cut into I snapshots. After short-time Fourier
transforms, let pmi denote the Fourier coefficient at the m-
th microphone in the i-th snapshot. Let qni be the ampli-
tude of the n-th sonon, located at rn = (xn, yn, zn). The
observed pressures are related to the sonon amplitudes as

pmi =

N∑
n=1

Gm(rn)qni + νmi, (1)

where Gm(rn) is the Green function between point rn
and the m-th microphone position, denoted by rm, and
νmi stands for an additive error. In free field conditions,
at the given frequency f , Gm(rn) is given by

Gm(rn) =
exp(−ik∥rn − rm∥)

4π∥rn − rm∥
, (2)

where k = 2πf/c and c is the sound speed. In matrix
form, the relationship reads

P = G(r)Q+N, (3)

where, P = [p1, ...,pI ]
T ∈ CM×I , r = [rT1 , ..., r

T
N ]T ∈

R3N , Q = [q1, ...,qI ]
T ∈ CN×I and N =

[n1, ...,nI ]
T ∈ CM×I .

The objective is to infer the positions rn and the
complex-valued amplitudes qni of the N sonons from the
observations pmi.

2.3 Hierarchical model

The two unknowns Q and r are regarded as random vari-
ables in a Bayesian formulation. The objective is to find
their posterior distribution [r,Q|P]. These variables are
integrated into a Bayesian hierarchical model. According
to Bayes’ Theorem,

[r,Q|P] =

I∏
i=1

[pi|r,qi][qi|r]
[pi]

[r]. (4)
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2.3.1 Likelihood function

The radiation function indicates that the observed data in
each snapshot, represented by pi, obey the same PDF as of
the additive error, which can reasonably be approximated
as a complex Gaussian with mean G(r)qi and covariance
matrix Σn = diag(σ2

0),

[pi|rest] ∝ CN (pi;G(r)qi,Σn). (5)

where “|rest” means conditioned to all other variables.

2.3.2 Priors

The prior PDF reflects the user’s expectation or knowl-
edge before the measurements. In our model, different
from the grid-based approach that assumes that the source
position has equal probability over a predefined and lim-
ited grid, we give a prior PDF to the positions of the
sonons and infer their posterior PDF. A possible prior
would be the Gaussian distribution centered on the prior
acoustic center of the source distribution. For simplicity,
and without loss of generality, let’s place the latter at the
frame origin, so that,

[r] ∝ N (r; 0, λ2I), (6)

where λ2 controls the variance of sonons position.
For the source amplitudes, as the Fourier coefficients

are not known in advance, the zero mean complex Gaus-
sian distribution is chosen,

[qi|r] ∝ CN (qi; 0, γ
2Σq), (7)

where [Σq]ij is the covariance matrix that describes the
spatial coherence between two sonons located at ri and
rj , and γ2 controls the prior absolute amplitude.

2.3.3 Hyperpriors

In the previous analysis, three hyperparameters were
added to control the variance of position, the noise and
the source powers. These hyperparameters are also allo-
cated an PDF for later inference. The inverse Gamma law
is chosen for its simplicity:

[γ2] ∝ IG(aγ , bγ), (8)

[λ2] ∝ IG(aλ, bλ), (9)

and

[σ2
0 ] ∝ IG(aσ0

, bσ0
). (10)

3. MCMC ALGORITHM

Based on the Bayesian formulation presented in the previ-
ous section, the objective is to sample from the posterior
PDF [qi, r, γ

2, σ2
0 , λ

2|pi], for which no form is known.
The Gibbs sampler is appropriate for this scenario.

3.1 Collapsed Gibbs sampler

The Gibbs sampler is a well-known sampling method in
MCMC, which can repeatedly draw samples from the con-
ditional distribution of each variable.

The sampling process is shown below,
1: l← 1
2: repeat
3: r[l+1] ← [r|γ2,[l], σ

2,[l]
0 ,P]

4: q
[l+1]
i ← [qi|r[l+1], γ2,[l], σ

2,[l]
0 ,pi]

5: γ2,[l+1] ← [γ2|Q[l+1], r[l+1],P]

6: σ
2,[l+1]
0 ← [σ2

0 |Q[l+1], r[l+1],P]
7: λ2,[l+1] ← [λ2|r[l+1]]
8: l← l + 1
9: until convergence

3.2 Posteriors

The operation of the Gibbs sampler requires the calcula-
tion of posterior PDFs. It can be shown that the posterior
PDFs of qi, γ2, λ2 and σ2

0 have the same form as the prior
PDFs:

[qi|r,pi, rest] ∝ CN (qi;µq(r),Ωsq(r)), (11)

[γ2|rest] ∝ IG(apost
γ , bpost

γ ), (12)

[λ2|rest] ∝ IG(apost
λ , bpost

λ ), (13)

and,

[σ2
0 |P, rest] ∝ IG(apost

σ0
, bpost

σ0
), (14)

where µq(r) and Ωsq(r) denote the posterior mean
and covariance matrix of the sonon amplitudes, while
apost
γ ,bpost

γ , apost
σ0 , bpost

σ0 , apost
λ and bpost

λ are the posterior shape
and scale parameters of inverse Gamma PDFs.

For the posterior PDF of r, some caution is needed.
After some manipulation we get that r obeys the following
distribution,
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[r|P, rest] ∝
I∏

i=1

[r]CN (pi; 0,Σp(r)). (15)

where the covariance matrix Σp is function of r. The latter
has no closed-form solution, which leads us to resort to
another numerical technique.

3.3 Hamiltonian Monte Carlo (HMC)

HMC is an MCMC sampling method for high-
dimensional probability distributions. It merges the spirit
of Hamiltonian dynamics and Monte Carlo sampling to
produce an efficient sampling procedure [15, 16].

It basically extends the Gibbs sampler with the auxil-
iary variable

u = ∂r/∂t, (16)

which is considered as the speed of the sonons as they
travel in space, through the iterations (time t) of the Gibbs
sampler.

The aim of HMC is to draw in the auxiliary PDF
[u|r,P, rest] instead of in the complicated posterior PDF
[r|P, rest]. This process forms a joint PDF,

[r,u|P, rest] = [u|r,P, rest][r|P, rest], (17)

which immediately returns the target PDF when marginal-
ized over the speed u. By analogy with Hamiltonian dy-
namics, the Hamiltonian reads,

H(r,u) = − log[u|r,P, rest]− log[r|P, rest]
= K(r,u) + U(r), (18)

where K(r,u) and U(r) are the kinetic and the poten-
tial energies of the target PDF, respectively. By solv-
ing the Hamiltonian differential equation - Eqn. (20), we
can achieve alternate sampling in the auxiliary and target
PDFs.

A convenient choice for the distribution of the auxil-
iary variables u is the real Gaussian PDF, N (0, I), which
gives the kinetic energy,

K(r,u) = uHu. (19)

Therefore, the final HMC process to sample the pos-
terior PDF [r|P, rest] is,

1: l← 1
2: repeat
3: u ∼ (0, I).
4: Move the sonons in the phase space (r,u) to ex-

plore a new pair of parameters (r∗,u∗) by,{
∂r
∂t = ∂H

∂u = un
∂u
∂t = −∂H

∂r = −∂U
∂r .

(20)

5: Accept or reject the proposal (r∗n,u
∗
n) based on

the Metropolis-Hastings acceptance criterion [17, 18]

α < min (1, exp(−H(r∗n,u
∗
n)) +H(rn,un))) ,

(21)
where α is a random number drown from a uniform
PDF U(0, 1)

6: l← l + 1
7: until convergence

It can be noticed from step 4 that the algorithm is
making use of the gradient information of the target dis-
tribution, stored in the potential energy U , to generate
the motion of the sonons; this exhibits another benefit of
HMC, where gradient information enables Markov chains
to converge quickly to the target distribution.

4. NUMERICAL DATA VALIDATION

The gridless method is assessed here using three different
test cases. One is the identification of uncorrelated sources
and the reconstruction of their directivity in 2D, and then
similar aims are sought for correlated sources in 3D, the
other analyzes the far field directivity of a trailing edge.
In these test cases, the array configuration depends on the
dimensionality of the problem, the characteristics of the
source and the desired accuracy of the reconstructed field.
The number of sonons used can simply be chosen from
the number of peaks in the CBF map and can be increased
to achieve a more precise correlation.

4.1 Two uncorrelated sources in 2D

The first test case simulates two point sources emitting
uncorrelated white Gaussian signals with standard devia-
tions 1 and 0.5, measured by a 60-microphone array (see
Fig. 1). The two sources are located in the (x, y) plane at
(−0.1, 0) m and (0.3, 0) m, while the array is placed at a
distance z = 0.1 m from the source plane. The analysis
frequency is f = 1000 Hz and the SNR is set to 20 dB to
all the microphones.
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Figure 1. Configuration comprising two uncorre-
lated point sources and a 60 microphone array.

To set up the Gibbs sampler, the number of sonons
used to reconstruct the original sound field is chosen as
N = 5. Their starting positions are initialized by a uni-
form PDF in the region of interest. Other parameters are
randomly initialized by their respective prior PDFs. The
algorithm is run for 500 iterations.

Fig. 2 shows an example of a two-dimensional poten-
tial energy function U(r) and the final sample cluster of 5
sonons samples. It can be observed that the samples ad-
equately explore the high-probability region of the target
distribution, where the real sources are located.

To see the behavior of the chain more clearly, Fig. 3
shows how the positions of the five sonons change with
iterations. It can be noted that they fluctuate around the
position of the real sources and occasionally cross modes,
sampling from one potential energy region to another.

Eventually, the five sonons converge near the location
of the real source and the energy of the original sound field
is distributed to each of them. Since the phase and corre-
lation information is stored in q, we can observe how its
reconstructed directivity compares to the directivity of the
original sound field. (see Fig. 4). It is worth mentioning
that the directivity is calculated in the (x, y) plane, at 1m
from the origin and averaged over the last 50 iterations.

4.2 Two correlated sources in 3D

A similar analysis is tested in 3D, with source positions
at (−0.1,−0.1,−0.2) m, (0.2, 0.1, 0.2) m and the array
placed at z = 0.5 m from the xy plane. For this case,

Figure 2. Absolute value of the normalized potential
energy function U(r) = −log[r|P, rest] with sam-
ples of the distribution [r|P, rest] (blue points).

the source signals are two correlated Gaussian noises. For
the Gibbs sampler setup, the number of sonons and the
number of iterations are the same as in the 2D case.

Fig. 5 shows the Markov chains of the five sonons
as they explore the posterior PDF. It can be seen that
two sonons converge quickly to the locations of the true
sources, while the other keep on exploring the 3D space
with strengths close to 0.

Again, the directivity is reconstructed in the same way
as in the 2D case, and we can clearly observe from Fig. 6
the consistency of the sound field generated by the sonons.

4.3 Trailing edge noise radiation

In order to test the capability of the method to reconstruct
more intricate aeroacoustic sound fields, the case of the
airfoil trailing edge noise is analyzed.

The analytical model for the theoretical sound field
radiated by trailing edge noise is based on Amiet’s model
[19], the derivation of which can be found in [20]. It
should be noted that only the first-order leading edge
back-scattering correction has been considered. Fig. 7
shows the simplified airfoil configuration, where a circu-
lar array with M = 200 microphones is chosen in order
to reconstruct the directivity pattern at the mid-span plane
at a distance of 1m.

For the Gibbs sampler, the number of sonons is N =
200 and the algorithm is run for 200 iterations. The test is
analyzed at two frequencies f = 500 Hz and f = 1000

1111



10th Convention of the European Acoustics Association
Turin, Italy • 11th – 15th September 2023 • Politecnico di Torino

Figure 3. Markov chains of sonon positions r. Dif-
ferent colors represent the chain for each sonon. The
dashed lines represent the positions of real sources.

Hz. The algorithm is launched in 3D and the directivity
is reconstructed in the same way as before. The Mach
number is 0.05 in the positive direction of the x-axis.

As can be seen in Fig. 8 and Fig. 9, the composition
of 200 sonons is well able to reproduce the complicated
trailing edge noise field. The latter exhibits the radiation
characteristics of an acoustic dipole and, as the frequency
increases, the pattern tends to deflect towards the leading
edge and to show a cardioid shape. At 500Hz the sonons
accurately reproduce the small fluctuations in the original
directivity.

At 1000 Hz, with the same number of sonons, the di-
rectivity pattern is also mostly reconstructed. The prin-
cipal dipole behavior as well as the main lobe deflected
towards the leading edge are clearly seen. At higher fre-
quencies, short oscillations appear in the directivity pat-
tern, and these require an increased number of sonons to
be accurately reconstructed.

In general, the results of the sound field reconstruc-
tion will be sufficient for the user to comprehend the main
radiation characteristics, even if some spatial details can-
not be fully captured with a limited number of sonons.

5. CONCLUSION

The results shown in the papar demonstrate the effective-
ness of the new gridless method. It has major advantages.

First, the sampled sonons are free to move continu-
ously in space and can accurately find the actual source

Figure 4. Directivity of the original sound field
(black dashed curve) and of the 2D field recon-
structed by the sonons (red curve) for the last 50 iter-
ations averaged (dB scale).

Figure 5. Markov chains of the sonon positions r in
3D space. The black solid points represent the mi-
crophone array. The grey points represent the real
sources. The black lines are the converged chains
and the black dashed lines are the chains still in ex-
ploration. The black hollow points are the chain sam-
ples.

locations without requiring a predefined grid.
Next, by recovering the phase and correlation infor-

mation, a reconstruction of the directivity is achieved,
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Figure 6. Directivity of the original sound field
(black dashed curve) and of the 3D field recon-
structed by the sonons (red curve) for the last 50 iter-
ations averaged (dB scale).

Figure 7. Configuration of the airfoil and of the 200
circular microphone array.

which provides unique insight into the sound field radi-
ation properties.

The inclusion of a source position prior to the
Bayesian framework in the three-dimensional gridless
model also provides some flexibility, by allowing the in-
corporation of physical knowledge.

Of course, the correct tuning of the Hamiltonian
Monte Carlo is necessary for implementing the gridless
method. One perspective of future work will focus on au-

Figure 8. Directivity at 500Hz of the airfoil trailing
edge at the mid-span plane: theoretical sound field
(black dashed curve) and the 3D field reconstructed
by the sonons (red curve) for the last 50 iterations
averaged.

Figure 9. Directivity at 1000Hz of the airfoil trailing
edge at the mid-span plane: theoretical sound field
(black dashed curve) and the 3D field reconstructed
by the sonons (red curve) for the last 50 iterations
averaged.

tomating the tuning of HMC. This will aim to minimize
the discretization error in resolving the Hamiltonian equa-
tions.
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