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ABSTRACT* 

The urban acoustic environment (AE) contains valuable 
information on complex sub-systems of urban areas, such 
as traffic or biodiversity. As the availability of cheap 
sensors and computational power increases, so does the 
need for methods to process high-dimensional audio data. 
We take this as an opportunity to introduce complex 
networks (CNs) to the field of urban acoustics. CNs have 
proved effective in capturing the complexity of e.g. climate 
dynamics or brain structures, and thus, represent a 
promising tool for the high-dimensional urban AE. We 
present how CNs are constructed based on frequency 
correlation matrices and show their behavior for various 
time periods and sound sources. To demonstrate their use 
on audio data from the urban environment, we apply them 
to the dataset from the SALVE study to systematically 
characterize the urban AE. Here, we use subsets of SALVE 
with two different temporal resolutions: 1 s over three 
minutes and three minutes over 24 h.  Measures such as the 
average shortest path length identify urban sites with similar 
AEs, indicating the utility of CNs to identify non-random 
patterns in large datasets of the urban AE. 
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1. INTRODUCTION 

The Acoustic environment (AE) matters for a plethora of 
fields. For instance, it can be utilized to measure 
biodiversity in ecoacoustics [1] and the pleasantness of 
public spaces in urban planning [2]. Accordingly, due to the 
decreased cost of audio recordings in recent years, the 
temporal and spatially high-resolution sampling of the AE 
becomes feasible. This results in the availability of spectral 
information (e.g. sound sources) over time and at various 
locations. Thus, passive acoustic monitoring (PAM) 
represents an emerging source of valuable information for 
many research fields. However, the reduction in costs can 
easily result in several terabytes of data, but evaluated 
analysis methods for large-scale audio data are scarce – 
especially in the urban environment. In more natural 
environments, ecoacoustic indices [3] are deployed as a 
method to quantify the AE since approx. one decade. Still, 
the exact interpretations from these indices are under an 
ongoing debate, even for the more natural areas they were 
developed for [4]. Consequently, their use for more urban 
environments is not yet resolved either [5]. We take this as 
an opportunity to introduce complex networks (CNs) as a 
new framework for the characterization of the urban AE. In 
recent decades, CNs have emerged as a powerful tool for 
accurately representing real-world system (e.g. climate 
dynamics and brain activities [6]). One of the main 
advantages of CNs is their ability to capture the emergent 
properties and behaviors of the system as a whole, rather 
than focusing solely on individual components [6]. Here, 
we apply CNs to quantify frequency correlation matrices 
(FCMs), which have shown to be a promising tool to depict 
environment specific interrelationships between power 
spectra in high spatial and temporal resolution [7,8]. The 
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aim of this work is to give an intuitive understanding on 
how FCM based CNs in the urban AE work. For this, we 
briefly introduce the methodology and give examples for 
CN behavior on two different time-scales: (i) for three 
minutes and (ii) for 24 hours. 

2. METHODS 

The basis of our CN analysis are FCMs. We use FCMs to 
capture linear relations between frequency bins. Here, we 
calculate the correlation between all frequency bins over 
time (Fig. 1). In the urban acoustic environment, high 
correlations between frequency bins characterize the 
prevalence of particular sound sources and therefore 
provide valuable information to distinguish between the 
AEs of different urban settings [8]. We calculate the FCMs 
using Pearson correlation [7]: 
 

 

(1) 

 
Where x(f1) is the set of amplitudes at frequency f1. The 
calculated correlation coefficients form a symmetric matrix, 
where the i-by-j-th element represents the correlation 
coefficient between power levels at fi and fj.  
 

 

Figure 1. Procedure to build a simple graph from a 
spectrogram. First, a spectrogram is created (a) from 
which the FCM is derived (b), which is then 
thresholded to achieve the adjacency matrix (c) and 
the corresponding network representation (d). 

Subsequently, the coefficient of determination (R2) is used 
to measure the proportion of explained variance between 
two frequency bins. R2 quantifies the strength of the 
relationship between frequency bins and ranges from 0 to 1. 
As a next step, it is necessary to establish a threshold to 
dichotomize the FCM, as adjacency matrices for simple 
graphs have to be binary. This involves assigning a value of 
one to all R2 values above the threshold, indicating 
connected frequency bins, and zero to those below. Figure 1 
depicts the whole process. 
There is a plethora of measurements available from CN 
theory, once the network is created. In this work, we focus 
on the average shortest path length (ASPL) of the network, 
as preliminary analyses using ASPL indicated promising 
results. ASPL represents the average number of "steps" 
required to go from any given node to every other node in 
the network, taking into account the total number of nodes 
present. Thus, its value is dependent on the number of 
connections and the topology of those connections (i.e. a 
measure of connectivity). In our context, low ASPL 
indicates a greater number of high correlations between 
multiple frequency bins, resulting in fewer distinct 
communities. When there is a single dominant sound 
source, such as traffic, there are many high-frequency 
correlations across the spectrum, resulting in a lower ASPL. 
Conversely, when there are multiple sound sources that 
form distinct correlation communities, the ASPL will be 
higher. Therefore, the ASPL of the urban AE can be 
interpreted as an index of "acoustic dominance". Finally, it 
should be noted that the network should be fully connected 
to calculate the ASPL [6], which is why different R2 
thresholds are used for the following analysis. For the sake 
of conciseness, the identification of optimal thresholds will 
be discussed in future works. 

3. DATA 

The audio data used in this work originates from the 
SALVE study [9]. Briefly, 50 3-min audio files have been 
recorded daily at more than 82 locations in Bochum since 
2019. Recordings were made using Wildlife Acoustics SM4 
recorders with a SMMA2 microphone [10]. The devices 
were programmed to record 3-minute recordings every 26 
minutes at a sampling frequency of 44.1 kHz and 16 bit 
depth. Here, we use subsets of SALVE for the two different 
temporal resolutions:  

i. One second windows of two 3-minute recordings 
from the urban forest and a main street, 

ii. 3-minute windows of 50 daily recordings from 23 
urban sites. 
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For (i) we derived the spectral content using Welchs 
method with a “tukey” window of a block size of 2048 and 
an overlap of 25%. FCMs, CNs and their respective ASPL 
were calculated for each second of the respective recording. 
For (ii) a power spectrum for each recording was calculated 
using Fast Fourier Transform and then averaged for 1024 
bins with equal bandwidth. FCMs, CNs and their respective 
ASPL were then calculated between all frequency bins for 
each respective day. The frequency range for all data was 
limited to 13 kHz, as we found no substantial power above 
13 kHz in the urban environment [8]. 

4. RESULTS 

In the following, the behavior of complex networks of the 
urban AE is illustrated, using two different temporal 
resolutions. 

4.1 Complex Networks on 1 s in  3-minute recordings 

Figure 2, shows that the ASPL can capture the occurrence 
of distinct sound sources quite well. First off, the average 
ASPL of background noise is around 1.8, which drops 
remarkably during the time frames were distinct sound 
sources are present (e.g. bird vocalizations or single cars 
passing by). However, as soon as multiple sound sources 
begin to overlay, the ASPL drops become substantially less 
pronounced (Fig 2b: 120 s - 180 s). This suggests that 
ASPL is highly sensitive to the presence of sound sources 
on very short time scales and could be a useful tool to 
differentiate between polyphonic and monophonic sounds 
in the urban AE. 

4.2 Complex Networks on one day of recordings 

Figure 3 depicts the FCM and the corresponding CN of two 
days of recordings at the main street (a) and the urban forest 
(b). The ASPL for the main street is 1.01 and the ASPL for 
urban forest is 2.32. It shows that CNs between 3-minute 
recordings exhibit distinct patterns from those on a 1 s 
resolution. From the latter (Fig. 2), overlapping sound 
sources show higher ASPL, thus, a busy main street could 
be expected to have a higher ASPL than a rural urban 
forest. However, this assumption does not transfer to the 
ASPL behavior on a 3-minute resolution. This is most 
likely the case, because power spectra over three minutes 
are more similar to each other than the spectral content of 
single seconds [8]. 
However, another interesting pattern can be derived from 
the ASPL for a 3-minute resolution. As virtually all 
frequency bins for the main street correlate with each other, 
the AE can be assumed to be “dominated” by only a few 

factors. In contrast, multiple rectangular communities form 
for the urban forest, which indicates several factors causing 
the communities. This is further validated by Fig 3c, which 
represents a mixture of (a) and (b), where the main street 
spectrogram from 05:00 to 08:59 was replaced with the bird 
chorus from the urban forest during that time. Here it shows 
that the integration of bird vocalizations favors the 
emergence of rectangular structures in the FCM, which will 
increase ASPL: (a) is 1.01 and (c) is 1.72. 
 

 

Figure 2. Two 3-minute recordings of bird 
vocalizations (a) and passing cars (b). For each second 
of the signal a FCM, the CN (threshold: R2=0.1) and 
the respective ASPL were calculated, which is plotted 
over time. It can be seen that distinct sound events are 
recognized, but that polyphonic signals (e.g. (b) from 
120 s to 180 s) result in a lower ASPL than 
monophonic signals.   

5. DISCUSSION & COCNLUSION 

The decrease in cost for PAM and the resulting increase in 
the availability of large-scale audio data from the urban 
environment calls for an elaboration of methods tailored 
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towards its special features.  Here, we build CNs based on 
FCMs to capture frequency dynamics of the urban AE. We 
use the ASPL to quantify the topology of those networks 
and interpret it as a measure of “acoustic dominance”.  
 

 

Figure 3. Depicted are FCMs (using R2) and the 
respective Adjacency Matrix (threshold: R2=0.7) for 
the respective land use over 24 h for one day. The 
“Main Street-Chimera” is the FCM of a spectrogram-
mix from a) and b), where the data between 00:00 to 
04:59 & 09:00 to 23:59 originates from “Main street” 
and data from 05:00 to 08:59 originates from “Urban 
forest”. 

We show application examples on two time-scales, which 
indicate that (i) the ASPL identifies sound signals on a 1 s 
time resolution and could be of use to differentiate between 
polyphonic and monophonic signals; and (ii) that the ASPL 
on a 3-minute time resolution shows promising results to 
differentiate between urban environments with higher/lower 
“acoustic dominance”. Altogether, CNs are a new 
framework that could be used to characterize sound source 
constellations in the urban environment to e.g. link them to 

human perception. To do so, future works should validate 
the behavior identified in this work for larger datasets and 
the mechanisms, which influence the emergence of 
frequency communities need to be further understood. 
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