
10th Convention of the European Acoustics Association
Turin, Italy • 11th – 15th September 2023 • Politecnico di Torino

COMPARISON OF BOUNDARY ELEMENT BASED AND PLANE WAVE
APPROXIMATION COMPUTATIONS OF TARGET ECHO STRENGTHS

L. Pacaut1,2∗ J-F. Mercier2 G. Serre1
S. Chaillat2

1 Naval Group, Ollioules, France
2 POEMS, CNRS, Inria, ENSTA Paris, Institut Polytechnique de Paris, France

ABSTRACT

In naval defence applications, the knowledge of the Target
echo strength (TES) of a submarine is of major interest, in
order to optimize the scattered pressure that can be mea-
sured by an active sonar. In this contribution, we consider
a rigid target and compute the TES using two methods:
(i) the solution of the Helmholtz equation by reformulat-
ing it into a boundary integral equation with either a full
space Green’s function or a tailored Green’s function, and
(ii) the use of a plane wave approximation, well-suited for
medium to high frequencies. In the first case, the use of a
tailored Green’s function adapted to the presence of a tar-
get reduces the cost of the numerical model. However, an
integral equation still has to be solved. It is not the case
with the plane wave approximation where the boundary
pressure is not calculated but is considered proportional
to the incoming wave. Numerical tests are performed
to compare the efficiency and accuracy of each approach
with respect to available numerical models developed on
the submarine model “BeTSSi” – for Benchmark Target
Strength Simulation –, under rigid hypothesis.
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1. INTRODUCTION

The two main ways to detect a submarine nowadays are (i)
to measure the proper sound produced by the ship using a
passive SONAR or (ii) to measure the scattered pressure
resulting from its excitation by a plane wave, using an
active SONAR. The quantity used to study the scattered
pressure, in the latter case, is the Target Echo Strength
(TES). In order to reduce the TES of a submarine, a pre-
cise computation of the scattered pressure with reasonable
computation costs is of major interest. Various methods
have already been proposed based on the Boundary Ele-
ment Method (BEM) [1], or on Kirchhoff and other ap-
proximations [2]. Here, we focus on two methods: (i) the
solution of Helmholtz equation using a boundary element
method with tailored Green’s function and (ii) the use of a
plane wave approximation. Then, we validate each formu-
lation over a sphere case. Finally, we apply these methods
to the industrial Betssi submarine, under rigid hypothesis.

2. BOUNDARY INTEGRAL REPRESENTATION
FORMULATIONS

Formulations using free field and tailored Green’s
functions. Considering an obstacle surrounded by a
fluid domain Ω excited by a generic source S, the total
pressure p is solution of the Helmholtz equation

(∆ + k20)p(x) = −S(x), x ∈ Ω (1)

with k0 the wave-number and ∆ the Laplace operator.
The scattered pressure ps = p− pi satisfies

(∆ + k20)ps(x) = 0, ∀x ∈ Ω, (2)
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with pi the incident pressure incoming towards the obsta-
cle.
The solution of the Helmholtz equation (2) is obtained
by introducing an arbitrary Green’s function G and using
Green’s theorem.

∀x /∈ Γ,

ps(x) =
∫
Γ

(
ps(Y)

∂G

∂nY
(x,Y)−G(x,Y)

∂ps
∂nY

(Y)

)
dSY,

(3)
where n is the normal pointing outward the obstacle, of
surface Γ.
An option for G is to consider a Green’s function GT tai-
lored to the obstacle (satisfying the rigid boundary condi-
tion) [3], solution of

 (∆z + k20)GT (x, z) + δ(x − z) = 0 ∀z ∈ Ω,
∂GT

∂nZ
(x,Z) = 0 ∀Z ∈ Γ,

(4)
for any source located at x ∈ Ω. The choice of this
Green’s function simplifies (3) such that, with the Neu-

mann boundary condition
∂p

∂n
= 0 over Γ in the rigid

case,

ps(x) =
∫
Γ

GT (x,Y)
∂pi
∂nY

(Y)dSY. (5)

To compute GT , we introduce the free field Green’s
function G0 and we use the Green’s theorem for the prob-
lem (4), such that GT satisfies

GT (x, z) = G0(x, z)−
∫
Γ

(
GT (x,Y)

∂G0(z,Y)

∂nY

)
dSY.

(6)
Introducing the doubler layer potential which to any

field ϕ associates the function

(Dϕ) : x ∈ Ω 7→
∫
Γ

∂nYG0(x,Y)ϕ(Y)dY (7)

and its trace

lim
x→X+

(D)(x) = (
1

2
I +D)(X), (8)

the tailored Green’s function is solution of the integral
equation [3]

(
1

2
−D)GT (x,Z) = G0(x,Z), ∀Z ∈ Γ,∀x ∈ Ω. (9)

( 9) shows that the computation of the tailored Green’s
function does not depend on the type of source pi (in-
cidence for instance), but only on the geometry of the
obstacle. Once GT computed, only the low-cost integral
representation (5) has to be calculated when changing the
source.

Plane Wave Approximation. To consider high fre-
quencies, large meshes are needed. But they also lead
to large computational costs for BEM solvers. Approxi-
mations, such as the Plane Wave Approximation (PWA)
are therefore useful to evaluate sound levels in reasonable
computational times at high frequencies. The PWA, de-
scribed in [4], relies on the imposed relation

ps(Y) = ρcvsn(Y), ∀Y ∈ Γ, (10)

where vn is the fluid velocity normal to the boundary, ρ its
density and c its celerity. In a rigid case, vn = 0 = vsn+vin
leads to ps = −ρcvin.

Using Green’s theorem for the Helmholtz equation
satisfied by pi, it can be shown that, for x ∈ Ω,

∫
Γ

(
pi(Y)

∂G0(x,Y)

∂n
−G0(x,Y)

∂pi(Y)

∂n

)
dSY = 0.

(11)
Adding (11) to (3), and using the Neumann boundary

condition, lead to

ps(x) =
∫
Γ

p(Y)
∂G0

∂nY
(x,Y)dSY. (12)

For a plane incident wave pi = p0e
i(keinc.x−ωt) carried

by the unit vector einc, we get ρcvi = eincpi and thus

ps(x) =
∫
Γ

pi(Y)(1− einc.nY )
∂G0

∂nY
(x,Y)dSY, (13)

The advantage of (13) is that it does not require any sys-
tem inversion. It can be computed directly without any
inversion, contrary to formulation (5). But this is done at
the price of some loss in the accuracy due to the PWA ap-
proximation (multiple reflections are note considered for
instance). The goal of this contribution is to evaluate the
accuracy of (13).
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3. ACCURACY FOR THE CASE OF A RIGID
SPHERE

We consider an obstacle that consists of a rigid unit
sphere. The source is a plane wave. We focus on the rela-
tive error defined by

err =
|pnum − pana|

|pana|
, (14)

with pnum = pi + pnums , pana = pi + panas , pnums and
pnums being the numerical and analytical scattered pres-
sures [5]. The considered fluid is water. The mesh for
low to medium frequencies has 2 886 nodes and 5 768 el-
ements. The mesh for high frequencies has 132 402 nodes
and 264 800 elements. Both meshes are designed to have
at least 10 points per wavelength at each frequency.

Validation in the far field domain of (5) at low
and medium frequencies. Figure 1 shows the valida-
tion of the tailored Green’s function and therefore of (5),
thanks to a comparison with an analytical result obtained
by decomposing on spherical Bessel functions [5]. We see
a good agreement between the numerical and analytical
results, since the relative error is smaller than 0.15%.

Figure 1. Relative error between formulation (5)
with GT and the analytical solution averaged on 5
random points in Ω.

Accuracy of the PWA in the far field at high fre-
quencies. Figure 2 shows the relative error between the
Plane Wave Approximation (13) and the analytical results.
The PWA gives results with a mean error of around 5% on
sound pressure levels. This is a satisfactory approximation
of high frequency problems.

4. EFFICIENCY FOR THE BETSSI RIGID CASE

Betssi, for Benchmark Target Strength Simulation, is a
submarine developed by FWG in Germany for which var-

Figure 2. Relative error between the PWA formu-
lation (13) and the analytical solution averaged on 5
random points in Ω.

ious Target Echo Strength (TES) computations were per-
formed (see, for instance, [2]).
The TES determines the reflectivity of an obstacle for an
incoming plane wave, and is used here to test formulations
(5) and (13). It is defined by:

TES = 20 log10(|
ps
pi

|) + 20 log10(|Robs − r0|), (15)

where ps is the scattered pressure taken at an observer
point, pi the incoming plane wave, Robs the distance of
the observer point from the obstacle and r0 the center of
the obstacle. Here, Robs = 800m is considered to be ”as
infinity”. Since the formulation (5) with GT is well suited
for varying source and fixed receiver, a multi-static TES
is computed to check formulation (5). In this case, the ob-
server is placed at φobs = π/2 and the incidence angle
of the plane wave varies (Figure 3). To validate the PWA,
we focus on the mono-static case (φobs = φPW ) which is
more commonly used.

Figure 3. Angles associated to the observer and the
incident plane wave around BETSSI (schematic).

Results at 200 Hz - Formulation with GT . Figure
4 shows the comparison between formulation (5) and a
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BEM formulation taken as reference, at 200 Hz. This for-
mulation is (3) using the free field Green’s function G0.
For this frequency, the mesh has 18 865 nodes and 34 346
elements leading to 10 points per wavelength. The results
are satisfying: the reference formulation with G0 and for-
mulation (5) with GT are close to each other.

Figure 4. Comparison between the multi-static TES
computed using (5) with GT and BEM formualtion
with G0 (taken as reference) at 200 Hz.

Results at 3 kHz - Plane Wave Approximation.
PWA is interesting at high frequency when numerical
costs are high. To test the validity of the PWA formu-
lation (13), we focus on 3 kHz frequency, for which we
have a reference solution in the literature. The mesh has
1 954 516 nodes and 3 909 028 elements, leading to 17
points per wavelength. Figure 5 compares the PWA for-
mulation (13) to a reference [1] and it shows that the ap-
proximation gives satisfactory results at high frequency
with low computation costs.

5. CONCLUSION

For low to medium frequencies, we have tested that the
formulation (5)based on boundary integral equations with
GT gives accurate results. This method does not rely on
the source type and only depends on the geometry of the
obstacle and the fluid characteristics. At high frequencies,
the plane wave approximation can be useful to determine a
first order approximation with limited computation costs.

Figure 5. Comparison between the mono-static TES
computed with the PWA formulation (13) and a BEM
computation from [1] at 3 kHz.
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