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ABSTRACT* 

Two simultaneously sounding tones differing in frequency 
by a few Hertz generate a waveform, whose amplitude 
modulation relates to the psychoacoustic quantity <fluctua-
tion strength=. Following the historic approaches of sensory 
consonance, any deviation from a pure interval yields dis-
sonance. However, imperfect intonation is quite common in 
musical performance; some instruments are even slightly 
detuned by intention. Examples are various flat and sharp 
CELESTE ranks in the Pipe Organ or the VIOLIN double-reed 
and MUSETTE triple-reed stop of the Accordion.  
Undulating sounds are pictured as pleasant, shimmering, or 
celestial. This work explains why mistuned dyads may still 
appear as consonant sounds. Moreover, it shows that the 
tonal timbre of harmonic complex tones can change notice-
ably and periodically with the beat cycle. The usual practice 
of CELESTE tuning Pipe Organs and Accordions has been 
analyzed to get an overview. Combining this information 
with data on the just noticeable frequency difference of our 
hearing allows deriving general tuning progression rules.  
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1. INTRODUCTION  

Some musical instruments generate intentional beats by 
producing two tones simultaneously, whose frequencies 
differ by a few Hertz. In the Pipe Organ, the term CELESTE 
rank refers to a set of pipes tuned sharp or flat with respect 
to true pitch. Several examples occur within the families of 
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organ tone: a flat-tuned FLUTE (often named UNDA MARIS), 
the DIAPASON CELESTE (VOCE UMANA in the Italian organ 
tradition) and, most common, the STRING CELESTES (VOIX 

CELÉSTE, VIOLIN CELESTE). Pipe Organs do not make use 
of CELESTES in reed ranks; instead, these occur in Reed 
Organs and Accordions. The VIOLIN stop of the Accordion 
combines two reed ranks (true, sharp) and the MUSETTE 
stop consists of three ranks (tuned flat, true and sharp).  
The beat frequency (BF) is usually set between 0.5 Hz and 
15 Hz ; a gradual rise upon pitch is considered desirable.  
Although the beating tone arises due to a detuned unison 
interval, it sounds consonant and additionally a chorus 
effect emerges (as known from strings playing unison).  
The following sections address four questions:  
-  What is the BF, or, what are the BF of a complex tone?  
-  Why do mistuned intervals sound consonant?  
-  Does a CELESTE rank modify the tonal timbre?  
-  What are the tuning progression rules for CELESTE ranks?  

2. THE BEAT FREQUENCY OF COMPLEX TONES  

Two pure tones with similar frequencies  f 3 Δf / 2  and  
f +Δf / 2  generate the BF  Δf << f . In case of two harmonic 
complex tones, frequencies of the form  n ∙ (f 3 Δf / 2)  and  
m ∙ (f + Δf / 2)  occur yielding multiple BF, such as  n Δf  for  
n = m  and integers n and m. The lowest BF, Δf , corresponds 
to that of the primary beats, most clearly perceived [1] in 
holistic listening. Focusing on any lower partial (spectral 
listening) allows to recognize the corresponding secondary 
BF  n Δf  of this harmonic (i.e. the n-th partial). This is, of 
course, easier for those partials with the highest sound 
pressure levels (SPL). Fig. 1 depicts the harmonic partials 
of the sound spectra of two organ pipes (both pitch C5 ), one 
belonging to the rank VIOL DI GAMBA 8´ and the other from 
the VIOL CELESTE 8´. Both ranks are part of the <St. 
Anne´s= digital pipe organ sample set, from which their 
long-term average sound spectra were extracted (see [2] for 
details). This pipe organ is tuned to  f (A4) = 436.5 Hz  and 
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thus  f (C5) j 519 Hz . However, to exemplify the beat effects 
over time with <smooth= numbers, Fig. 1 plots both wave-
forms as if the frequencies of the two pipes were 499.0 Hz 
and 501.0 Hz yielding to exactly 2.0 Hz beat frequency.  

 

 

Figure 1. The sound spectra of the VIOL DI GAMBA 
8´ and the VIOL CELESTE 8´ (top) for  Δf = 2.0 Hz . 
The SPL varies periodically over time (middle). The 
two selected timbre parameters in the bottom chart 
and their variation in time are discussed in Ch. 4.  

To tackle the initial question what the BF of a complex 
is, the middle chart of Fig. 1 provides two answers: The 
total SPL (dashed curve) varies with  Δf = 2.0 Hz , which 
is the BF in the condition of holistic listening. However, 

in spectral listening the BF refers to the frequency of the 
varying SPL of that partial on which the listener focuses 
his attention. Note that the BF of the fundamental (n = 1) 
equals the BF of the complex tone (black curves).  

3. THE REASON FOR CONSONANCE  

Various models of tonal consonance for dyads have focused 
on the frequency ratios of their fundamentals [3, 4]. 
According to these compactness approaches, intervals with 
frequency ratios of small natural numbers (like 1:1, 2:1, 3:2 
etc.) are regarded consonant [3], while a slight frequency 
deviation would suffice for dissonance. Other theories use 
auditory roughness to explain consonance, because a maxi-
mum of dissonance occurs when the frequency difference 
of the two tones corresponds to j 27 % of the critical 
bandwidth (Fig. 10 in [3]). A recent study has proven that 
the model for sensory consonance significantly improves 
when combining the compactness and the roughness 
approach rather than just adhering to one of them [4].  
Moreover, taking account for the just noticeable frequency 
difference creates a transition region, a few Hertz wide, in 
which the consonance of pure intervals gradually changes 
into dissonance [4]. Including the difference limen is the 
key to understand why musical intervals, which are rarely 
tuned perfectly in practice (e.g. in musical performance), 
can still sound consonant. For example, a stretched octave 
consisting of two pure tones with frequencies of  499 Hz  
and  1002 Hz  still appears consonant. The beats (Δf = 4 Hz) 
are too slow to cause auditory roughness [5], but they 
identify the octave interval as mistuned, while the undulat-
ing sound is perceived with a certain fluctuation strength.  

4. HOW BEATS MODIFY TONAL TIMBRE  

4.1 Fluctuation strength  

The basic model of fluctuation strength F correlates the 
frequency Δf with the SPL difference ΔL caused by the 
undulation [5]. Note that fluctuation strength and magnitude 
ΔL are proportional to each-other (F ~ ΔL) and that a BF of  
Δf = 4 Hz  generates maximum fluctuation strength [5].  
With complex harmonic tones instead of pure tones, the 
fluctuation strength can decrease due to the contribution of 
even partials (n = 2, 4, 6, …). The reason is that the nodes of 
the latter do not coincide with those of the fundamental, 
thus reducing the magnitude ΔL . This is visible by com-
paring the black curves of the SPL in the top chart of Fig. 1. 
Keeping in mind that  F ~ ΔL , the fluctuation strength of 
undulating complex tones without odd partials (as with 
STOPPED FLUTE ranks) or of tones with comparably weak 

4456



10th Convention of the European Acoustics Association 
Turin, Italy • 11th 3 15th September 2023 • Politecnico di Torino 

 

 

harmonics (as in an OPEN FLUTE of wide pipe-scale) is 
larger than for DIAPASON ranks, STRING ranks, or Accor-
dion reeds, all of them rich in harmonic content. Since 
STRING ranks are preferred over FLUTE ranks to obtain the 
CELESTE effect in Pipe Organs, it seems that organ builders 
are generally not aiming for maximum fluctuation strength, 
rather than for the periodic alteration of tonal timbre.  

4.2 Tonal timbre  

A harmonic complex tone contains the frequencies  fn = n f  
of several partials. In a dyad of two complex tones with 
similar frequencies (as in Fig. 1) each harmonic n undulates 
with its individual BF  n Δf . The SPL of all odd harmonics 
reach a common minimum twice per cycle; at these times, 
only the even partials contribute to the spectrum. This 
yields a periodic change of the spectral centroid c and to a 
variation of the slope parameter s , defined by Eqn (1):  

 

 
 

Since the slope parameter is calculated from the magnitudes 
of the sound spectrum at the harmonic partials Ln , its value 
is sensitive to extinguished partials (where  Ln → −∞ ), re-
sulting in ripples visible in the bottom chart of Fig. 1.  
The timbre parameter c is noticeable as brightness and the 
slope parameter s refers to the string quality of the sound 
[2]. As these parameters change periodically with time, the 
related sound qualities vary correspondingly. For the 
selected combination of the VIOL DI GAMBA 8´ and the 
VIOL CELESTE 8´ (Fig. 1) the normalised spectral centroid 
calculates to  c / f = 2.67  without beats and varies within the 
range  2.12…3.55  with beats. In this example, one would 
notice a loudness fluctuation in addition to the variation of 
tonal timbre. A closer investigation of the bottom chart in 
Fig. 1 reveals that two main maxima occur in the course of  
c / f  within one beat cycle, while the main maximum of the 
slope parameter s appears only once per period.  
It seems that organ builders aim for this kind of timbre 
fluctuation (<shimmering=), when including a STRING 

CELESTE. In contrast, a FLUTE CELESTE can only introduce 
the effect of loudness fluctuation, but it cannot noticeably 
vary the timbre, as it lacks the harmonic content to do so.  
Playing a single tone on a FLUTE rank (for which  c / f j 1.0  
above C2 [6], Fig. 5) with the tremulant (a device to periodi-
cally vary the wind pressure of the pipe organ) can sound 
similar to a FLUTE CELESTE. In both cases the loudness 
varies periodically, whereas the changes of the timbre pa-
rameters  c / f (t)  and  s (t)  are too small to be noticeable by 
ear. In contrast to the vibrato of a tremulant the CELESTE 
ranks facilitates adjusting the BF across the tonal compass.  

5. PITCH-DEPENDENT TUNING OF CELESTES  

The dependency between frequency and pitch is formulated 
using the pitch category p counting the semitone steps (cf. 
Tab. 134 in the Appendix). For a musical scale in 12-tone 
equal temperament this results in Eqn. (2).  

 
                    (2) 

 

                   (3) 
 

The pre-factor in Eqn. (2) is the frequency of A4 with the 
pitch category  p(A4) = 57 . Small pitch differences Δp are 
usually given in cent values. Thus, when working with elec-
tronic tuners it might be helpful to convert the BF Δf (p) into 
cent values (unit: ct) and vice-versa according to Eqn. (3).   

5.1 CELESTES in the Pipe Organ  

There are four basic ideas to tune a CELESTE rank (Fig. 2):  
a) Aim for a constant BF (e.g.  Δf = 2 Hz) of the CELESTE 
with the unison rank across the tonal compass. As a result, 
the octaves in the CELESTE rank are slightly compressed 
(i.e. flat), but still tolerable though. Since the BF is constant 
upon pitch, the effect is similar to that of a vibrato with the 
frequency Δf 3 especially for FLUTE ranks as their higher 
partials are too weak [2] to generate a timbre fluctuation.  
b) Adjust the BF at a reference tone, say A4 , to the desired 
value. Then keep the CELESTE rank <dry=, i.e. in tune with 
itself so that its octaves remain pure intervals. Organ builder 
E.M. Skinner proposed this method for CELESTE ranks, 
tuned sharp by  1.7 Hz  at A4 (i.e.  1.0 Hz  at C4 [7]).  
Apart from these recipes, other variants are in use, such as:  
c) Take the pitch of the pure major third from the frequently 
available TIERCE 13/5´ rank for tuning (e.g. use the F2 pipe 
of the TIERCE to tune A4 of the CELESTE rank). The result is 
a flat CELESTE (Δf = 33.5 Hz  at A4) with pure octaves, but 
its beats are often considered too fast in the treble.  
d) A reasonable compromise between methods a) and b) is 
to double the BF every 1.5 octaves (and  Δf j 1.7 Hz  at A4 ).  
In general, the BF of CELESTE ranks Δf (p) is either constant 
(case a), or it increases exponentially upon pitch p .  

5.2 CELESTES of the Accordion  

Accordions commonly provide beats as characteristic 
feature and several traditions for CELESTES styles exist on a 
scale from <dry= to <wet= (referring to  Δf = 0.5…7 Hz  at  
A4 ). Note that knowing the BF at A4 alone is insufficient to 
describe a tuning curve Δf (p), for which the BF increases 
upon pitch. If the beats accelerate with a constant rate (i.e.  
Δf (p) ~ p ) this results in straight lines (Fig. 3). The BF can 
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also rise exponentially upon pitch, either across the whole 
compass or in a part of it. Moreover, there are other tuning 
curves in use. Note that comparing Δf values (given in Hz) 
to cent values (as used in electronic tuners) one needs to 
convert these quantities first according to Eqn. (2) and (3).  

 

Figure 2. Four approaches to tune CELESTE ranks in 
the Pipe Organ as described under a) 3 d) in the text  

 

Figure 3. Tuning curves in two different Accordions 
and a Harmona (a reed organ with Accordion reeds)  

In summary, two important cases occur:  
e) The BF Δf (p) increases linearly upon pitch, or,  
f) the BF grows exponentially (as in d), i.e. Δf (p) doubles  
    its value after the same pitch distance, e.g. each octave.  
Limiting the BF in the treble, e.g. at j 10 Hz (Fig. 3) or 
15 Hz [8] might be desirable to avoid auditory roughness 

caused by secondary beats. Studies on different Accordions 
including listening tests indicated that Δf (p) should increase 
linearly in the bass and exponentially in the treble (<mixed 
type= in Fig. 4), or follow an S-shaped curve [8].  

5.3 Proposals for CELESTE tuning  

The choice of suitable BF is a matter of the reverb time of 
the room, of personal taste and it depends on the style of 
music. Moreover, single notes seem to tolerate more de-
tuning than chords, and CELESTE ranks with high harmonic 
content are usually tuned <wetter= than FLUTE ranks.  
One can derive an upper bound for Δf (p) using the just 
noticeable variation of frequency (JNVF, [5]) of our hearing 
as orientation. To obtain a frequency-dependent expression 
for the JNVF an empirical function was fitted to depicted 
data [5] resulting in Eqn. (4), valid for  50 Hz < f < 20 kHz:  

 

             (4) 
 

    where f is the frequency and ai are coefficients given by  
    a31 = 7.76,  a0 = 319.6,  a1 = 20.2,  a2 = 39.57,  
    a3 = 2.12,  and  a4 = 30.17  yielding  R2 = 0.99999.  
This empirical function is shown in Fig. 4 as dotted curves.  
A second requirement is that the BF of the CELESTE shall 
steadily increase upon pitch while neither exceeding the 
JNVF nor a maximum of  15 Hz  (or even less) [8].  
These two criteria allow commenting on the methods a) - e):  
a) It is possible to keep the BF Δf (p) at a constant value, if  
Δf (p) ≤ 3.5 Hz , but this misses the chance that each tone (of 
a chord) beats with its own, individual frequency.  
b) For a five octave key compass Δf (p) increases too much. 
Moreover, octave dyads unnecessarily share common BF.  
c) With  Δf (A4) = 3.5 Hz  the BF exceeds the JNVF above 
C5 already. This might be still tolerable for Accordions, but 
considered unpleasant for tuning a Pipe Organ CELESTE.  
d) Doubling every 1.5 octaves is a good choice insofar as 
complex tones played in octaves will not share the same BF 
and the latter are distinct in frequently used chords.  
e) A linear course for Δf (p) will work reasonably below C5

 ; 
however, due to the relation between pitch and frequency, 
exponential laws appear to be the <natural= choice for the 
BF and is recommended, at least for larger pitch ranges.  
Fig. 4 depicts different possibilities for tuning curves. The 
top red curve is a proposal for Accordions based on listen-
ing tests ([9], valid for E2…A#7

 ) approximated by Eqn. (5).  
 

                     (5) 
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with  b0 = 1.15,  b1 = 4.42 ∙ 1033,  b2 = 33.34 ∙ 1036,    
          b3 = 1.63 ∙ 1039, and  b4 = 32.21 ∙ 10313,  R2 = 0.99981.  

 

Figure 4. Proposed CELESTE tunings in the range   
C2…C8

 . Tuning can be flat or sharp (except for c). 
For tabulated values of <type d)= see Appendix.  

5.4 Flat and sharp tuning of Pipe Organ CELESTES  

In Pipe Organs, most CELESTE ranks are tuned sharp, flat 
tuning (as in the UNDA MARIS) is less common. Let´s as-
sume, the audible frequency of a rank sounding together 
with its CELESTE equals  f + &f / 2 . Then, all intervals in a 
sharp CELESTE rank (i.e.  &f > 0) doubling their BF slower 
than once per 1.5 octaves (as in <type d=), are slightly 
compressed. However, as this deviation amounts to only 
0.07 ct per semitone (calculated at A4 ), it is not obvious, 
why organ builders frequently prefer sharp over flat tuning.  
One possible answer is that the pipe-scale for the CELESTE 
pipes is often smaller, compared to the unison rank, which 
increases their spectral centroid c and thus their brightness.  
Listening tests of harmonic complex tones with the same 
fundamental frequency f revealed that tones with a higher 
spectral centroid evoke a higher pitch height [10]. By tuning 
the CELESTE sharp, the brightness rises even a bit further. 
Note that this only holds true, if the CELESTE has a smaller 
pipe-scale than the unison rank and if the value  c / f > 1  (as 
for STRING and DIAPASON ranks [2]). Since FLUTE ranks 
possess almost minimum brightness (c / f j 1.0, Fig. 5, [6]), 
FLUTE CELESTES can either be tuned flat or sharp.  

 

Figure 5. Pitch dependency of  c / f  for both STRING 
ranks in this work, compared with a standard OPEN 

FLUTE [6] and a standard OPEN DIAPASON rank [6].  

5.5 Beat frequencies of more than one CELESTE  

Some Pipe Organs contain more than one CELESTE rank; in 
the Accordion we find the 3-rank MUSETTE. If the CELESTE 
ranks shall match together, the ratios of their BF should be 
small integers. To illustrate what is possible with a flat, a 
unison and a sharp rank consider the tuning: −&f , 0, +&f . 
Then the BF for any two combined ranks are &f  or 2 &f , for 
all three ranks they are &f  and 2 &f . For all other BF ratios 
the two concurrent modulations of all three ranks together 
result in irregular sounding beats. Another viable option is 
to apply an <asymmetrical= detuning like  0, +&f , +2 &f .  

6. SUMMARY AND CONCLUSIONS  

The undulating sound of musical instruments with CELESTE 
ranks sounds consonant, if  Δf < JNVF , in accordance with 
a recently revised theory on sensory consonance. This also 
explains why of a group of string instruments or a singing 
choir does not evoke a dissonant impression despite 
numerous small frequency deviations resulting in beats.  
A CELESTE introduces a loudness fluctuation to the sound, 
however, there is another effect involved, too. As the SPL 
of the partials within complex tones become time-depen-
dent, the tonal timbre varies in terms of brightness and 
string quality. The timbre variation is only important for 
sounds with high harmonic content such as STRING ranks or 
Accordion reeds. This might explain the sought-after effect 
provided by a STRING CELESTE rank in the Pipe Organ.  
Comparing common tuning practice of CELESTE ranks in 
Pipe Organs and Accordions as well as taking the JNVF 
values of the auditory system into account allowed formu-
lating tuning guidelines to obtain pleasant CELESTE ranks. 
CELESTES are preferably tuned sharp, if the corresponding 
unison rank owns less brightness. To combine CELESTES, 
their BF should equal simple ratios like 1:1 or 1:2.  

[9] 
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APPENDIX: TABLES FOR TUNING 

The proposed tuning curves depicted in Fig. 4 might be 
easier to use with some tabulated numbers. Thus, the fol-
lowing tables provide the values for the curves of <type d=, 
in which the BF doubles every 1.5 octaves. The BF and the 
pitch differences Δp were calculated according to Eqn. (2) 
and (3). Tab. 1, Tab 2, Tab. 3 and Tab. 4 refer to different 
quantities of Δf at A4 , namely  Δf (A4) = 1.4 Hz, 1.7 Hz, 
2.0 Hz, and 3.5 Hz, respectively. In these tables, the pitch 
distances equal 0.75 octaves and thus the Δf values double 
every second row. Contrary to <type b)= and <type c)=, the 
pitch difference Δp does not remain constant upon pitch.  

Table 1.  Tuning <type d)= for  Δf (A4) = 1.4 Hz  

Pitch f  in  Hz Δf  in  Hz p Δp  in  ct 
  F#2     92.5 0.49 30   9.3 
  D#3   155.6 0.70 39   7.8 

C4   261.6 0.99 48   6.5 
A4   440.0 1.40 57   5.5 

  F#5   740.0 1.98 66   4.6 
  D#6 1244.5 2.80 75   3.9 

C7 2093.0 3.96 84   3.3 
A7 3520.0 5.60 93   2.8 

Table 2.  Tuning <type d)= for  Δf (A4) = 1.7 Hz  

Pitch f  in  Hz Δf  in  Hz p Δp  in  ct 
  F#2     92.5 0.60 30 11.5 
  D#3   155.6 0.85 39   9.5 

C4   261.6 1.20 48   8.0 
A4   440.0 1.70 57   6.7 

  F#5   740.0 2.40 66   5.6 
  D#6 1244.5 3.40 75   4.7 

C7 2093.0 4.81 84   4.0 
A7 3520.0 6.80 93   3.3 

Table 3.  Tuning <type d)= for  Δf (A4) = 2.0 Hz  

Pitch f  in  Hz Δf  in  Hz p Δp  in  ct 
  F#2     92.5 0.71 30 13.2 
  D#3   155.6 1.00 39 11.1 

C4   261.6 1.41 48   9.4 
A4   440.0 2.00 57   7.9 

  F#5   740.0 2.83 66   6.6 
  D#6 1244.5 4.00 75   5.6 

C7 2093.0 5.66 84   4.7 
A7 3520.0 8.00 93   3.9 

Table 4.  Tuning <type d)= for  Δf (A4) = 3.5 Hz  

Pitch f  in  Hz Δf  in  Hz p Δp  in  ct 
  F#2     92.5   1.24 30 23.1 
  D#3   155.6   1.75 39 19.5 

C4   261.6   2.47 48 16.4 
A4   440.0   3.50 57 13.8 

  F#5   740.0   4.95 66 11.6 
  D#6 1244.5   7.00 75   9.7 

C7 2093.0   9.90 84   8.2 
A7 3520.0 14.00 93   6.9 
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