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ABSTRACT

Radiation of waves in an open domain is a common case
for many applications in acoustics. Depending on the sys-
tem, the damping effect introduced may not be negligi-
ble. When using the finite element method to model such
problems, appropriate techniques like absorbing boundary
conditions or perfectly matched layers can be applied to
achieve free field radiation despite the domain truncation.

We show how the resulting quadratic eigenvalue problem
of an acoustic system with free radiation boundary condi-
tions can be solved. The resulting eigenmodes are clas-
sified into physical modes and computational modes due
to the domain truncation. A reduced-order model is con-
structed by projection into a modal subspace. We suggest
a selection criterion for modes to include in the basis using
a similarity criterion with respect to selected full model
solutions.

We apply the model order reduction to a simple 2D ex-
ample of a Helmholtz oscillator. Both the accuracy and
performance of the strategy are evaluated, showing highly
accurate results. Due to the high computational effort for
solving the eigenvalue problem, significant performance
improvements can only be expected from the reduction
technique if many evaluations of the reduced order model
are required.
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1. INTRODUCTION

Vibrating structures radiate sound waves into the environ-
ment, leading to a damping effect. The importance of this
radiation damping ranges from negligible for typical steel
structures in vibrating air to substantial for lightweight
MEMS structures in water. When using the finite ele-
ment method to model such vibroacoustic problems, ap-
propriate techniques like absorbing boundary conditions
(ABCs) or perfectly matched layers can be used to en-
able free field radiation at the domain boundary. While
this works well in time and frequency domain problems,
the solution of the free oscillation eigenvalue problem to
determine the natural modes of the system including the
effects of radiation damping is less straightforward. Com-
puting those eigensolutions is desirable since they give
insight into the system behavior and they can serve as a
projection basis to generate reduced order models.

While projection-based reduced order models are
an established technique for conservative systems, e.g.
mechanical or acoustical systems with low proportional
damping, considerably less work has been done for sys-
tems with substantial damping effects. The relevant eigen-
value problem (EVP) for systems with radiation damping
becomes a quadratic one. A common approach here is to
linearize the quadratic EVP, and use the modes of the re-
sulting generalised EVP [1–3]. Damping due to free field
radiation is also not often analyzed in an eigenproblem
setting. It can, however, be treated similarly to damping
due to an absorbing mechanical material [4] or interface
damping [5].

In this work we focus on the solution of the free os-
cillation eigenvalue problem for an acoustic system with
open domain. The system is modelled by the finite ele-
ment method using the open source software openCFS [6].
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Model order reduction using a modal basis constructed
from eigenmodes of the quadratic eigenvalue problem is
conducted and compared to the full system is the fre-
quency domain on the example of a Helmholtz oscillator.

2. GOVERNING EQUATIONS AND FEM
FORMULATION

We consider systems governed by the acoustic wave equa-
tion in a domain Ω, which is appropriate for compressible,
inviscid fluids. Formulating it in terms of the acoustic
pressure p one obtains the following weak form∫

Ω

p′
1

c2
∂2p

∂t2
dΩ +

∫
Γr

p′
1

c

∂p

∂t
dΓ

+

∫
Ω

∇p′ ·∇p dΩ =

∫
Ωe

p′pe dΩ , (1)

where p′ denotes the test function and c is the speed of
sound. The absorbing boundary condition at Γr is ob-
tained from the radiation condition, and pe denotes a
known volume source.

Discretization with finite elements and application of
a Galerkin procedure yields a discretized system of the
form

Mp̈(t) +Cṗ(t) +Kp(t) = f(t) (2)

with the stiffness matrix K, the damping matrix C, the
mass matrix M , and the forcing vector f(t). The pressure
degrees of freedom are contained in the unknown vector
p(t) and a dot denotes a time derivative. Assuming har-
monic forcing of the form f(t) = ℜ{f̂ejωt} one can ob-
tain the frequency domain solution of eq. (2) by solving(

−ω2M + jωC +K
)
p̂ = f̂ . (3)

3. MODEL ORDER REDUCTION

The suggested model order reduction procedure is based
on the eigenmodes of the system eq. (2). The correspond-
ing (right) quadratic eigenvalue problem (QEVP) is(

λ2
i M + λiC +K

)
vi = 0 , (4)

with the eigenvalues λi and the (right) eigenvectors vi,
which, if not stated differently, are just referred to as
eigenvectors. Typically the eigensolution of an sub-
critically damped system with n degrees of freedom con-
sists of n complex-conjugated eigenvalue pairs λi, λ

∗
i and

eigenvector pairs vi,v
∗
i [3]. The two eigenvectors in each

pair are linearly dependent [2]. In continuous open do-
main problems the wave number ki in direction i of an
open end becomes a continuous function of the frequency
ki = ki(ω) [7]. Therefore, the eigenvalues also become
a function of frequency. As we will see in section 4 this
yields several computational eigenvalues due to the dis-
cretization applied to eq. (1) and the truncation of the open
domain.

Based on the modal expansion theorem [8] the physi-
cal coordinates p can be represented as a linear combina-
tion of selected mode shapes (eigenvectors) vi and their
respective modal coordinates qi. Selecting a subset of
m ≪ n modes we approximate the solution by

p ≈
m∑
i=1

viqi = V̂ q̂ . (5)

where the reduced modal basis is contained in the mode
shape matrix V =

[
v1, . . . ,vm

]
and the generalized

modal coordinates are collected in the modal coordinate
vector q =

[
q1, . . . , qm

]T
, with ( )T denoting the trans-

pose of a vector.
Qu [3] describes the general modal reduction of

quadratic systems by first linearising (e.g. companion lin-
earisation [2]) and then projecting into the modal sub-
space. It is suggested that the projection is done by ap-
plying the reduced modal expansion to the linearised sys-
tem and then multiplying from the left with the complex-
conjugate transpose of the reduced modal basis built from
left eigenvectors of the adjoint (left) eigenvalue problem.
Since the sets of left and right eigenvectors coincide for
QEVPs with real-valued symmetric matrices M , C and
K [2] eq. (3) is transformed to the modal harmonic system
by just using V and V ∗ with ( )∗ denoting the complex-
conjugate transpose, yielding

V ∗
(
−ω2M + jωC +K

)
V q = V ∗f . (6)

However, a non-conservative quadratic system cannot be
decoupled by a non-singular linear transformation [1] un-
less a linearization is applied beforehand [2,3] or only pro-
portional damping is present and mode shapes of the con-
servative system are used [2]. Therefore errors are intro-
duced when using a truncated modal basis, since qi may
depend on an omitted qj . Under the assumption that all
modes with high influence on the solution are included in
the reduced model, this effect may be negligible.

Due to the large amount of computational modes the
selection of a suitable modal basis V becomes tedious.
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Figure 1: 2D Helmholtz resonator with exploited
symmetry

Figure 2: Second physical cavity mode (left) and
typical computational mode (right)

One way of supporting this process is the comparison of
the mode shapes vi to the pressure field pk = p(ωk) ob-
tained from the full mode (3) at a few frequencies ωk and
selecting the ones with the highest correlation. The modal
assurance criterion (MAC) compares the shape of these
two vectors by

0 ≤ MAC(pk,vi) =

(
p∗
kvi

)2(
p∗
kpk

) (
v∗
i vi

) ≤ 1 , (7)

where a larger value indicates a more similar shape [9].

4. APPLICATION EXAMPLE

We apply the suggested modal reduction procedure to a
2D Helmholtz resonator, where the symmetry in the ver-
tical direction is exploited (fig. 1). The acoustic fluid
considered has a density of 1000 kgm−3 and a compres-
sion modulus of 300Pa yielding a speed of sound of
17.32m s−1.

The QEVP was solved with the FEAST algorithm
[10,11]. The resulting eigenvalue spectrum is displayed in
fig. 3, illustrating how the discretization and truncation of

Figure 3: Eigenvalue spectrum of the problem.

the frequency-dependent eigenvalue problem of the con-
tinuous system results in many complex-conjugated com-
putational modes. Additionally, super-critically damped
computational modes along the real axis are obtained,
which are located outside of the area covered in fig. 3.
Furthermore, we can easily distinguish the physical cav-
ity (Helmholz-resonator) modes by their lower damping.
Figure 2 illustrates the difference in the pressure field be-
tween physical and computational modes. Cavity modes
show high amplitudes within the cavity (trapped) and trav-
eling waves in the radial direction. Computational modes
feature high amplitudes outside of the cavity, especially
close to the ABC, and can also be of higher order in the
azimuthal direction. These modes describe possible wave
propagation through the open domain (upper half-space).

The modes included in the reduction basis were se-
lected based on their correlation to the solution of the full
system (3) at certain frequency points according to the
MAC (7). Figure 4 shows the MAC of the mode shapes
and the harmonic solutions at the cavity natural frequen-
cies. All modes with a MAC larger than a certain thresh-
old are included in the reduced basis.

5. RESULTS

Figure 5 shows the frequency response of the full and
the reduced models with the spatially averaged pressure
amplitude across the cavity and the open domain. Fig-
ure 6 shows the correlation (MAC) of their pressure field.
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Figure 4: Correlation of mode shapes and harmonic
solution at the cavity natural frequencies.

When only physical modes are included in the reduction
basis, only the solution in the cavity at frequencies close
to the cavity’s natural frequencies is modeled well. For a
high threshold of 0.1 (small reduced basis) the dynamics
outside the cavity are improved, but overall the reduced
model is still not accurate for frequencies further away
from the natural frequencies. A decrease to 0.01 (larger
reduced basis) greatly decreases the deviation from the
full model. A threshold of 0.001 (largest modal basis)
produces a reduced system that matches the full system
almost perfectly with a slight decrease in MAC above
50Hz. However, this may be due to the fact that only
modes up to a damped eigenfrequency of ωd,i < 60 s−1

were used for the reduced models. The improvements in
model accuracy by using computational modes illustrate
their importance in the dynamics, especially outside the
cavity and at frequencies other than the natural frequen-
cies.

The performance of the model reduction technique
was evaluated by comparing the single-core CPU times
and calculating a break-even-point, from whereon the ap-
plication of the reduced model brings time savings when
performing a frequency domain analysis. The calcula-
tion of the eigenvalues and eigenmodes took on average
253.2 s and projecting the system into the modal subspace
around 21.6 s. Considering a mean time of 0.62 s per fre-
quency step for solving the full system, around 450 fre-
quency steps were necessary until there were improve-
ments in CPU time with the utilized setup. This is because
the evaluation of the eigenmodes and projection of the full
system into the modal subspace is rather time costly. Af-

Figure 5: Frequency response of average pressure
p̂avg in the open domain (top) and cavity (bottom)
for the full model and different reduced models.

Figure 6: Similarity of pressure fields (top: open do-
main, bottom: cavity) for different reduced models
as compared to the full model.

ter the break-even-point the reduced model clearly outper-
forms the full model with a mean CPU time of 0.127 s per
frequency step, hence five times faster than solving the
full model.
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6. CONCLUSION

The presented workflow of model reduction by projec-
tion into a modal subspace is applicable to open-domain
acoustics. By selecting a reduction basis consisting of
eigenmodes based on their similarity to the harmonic so-
lution at certain frequencies a reduced order model that
yields an excellent approximation of the full model could
be generated. The degrees of freedom were reduced from
over 30,000 physical to merely 109, or less, modal ones.
This comes at the cost of validity at the frequency range
the reduced model is designed for. While the reduced
order model is cheap to evaluate for a single frequency
point, its generation, especially the computation of the
eigenmodes is computationally expensive. Therefore this
method seems only useful if a quite finely resolved fre-
quency domain solution is desired.
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