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ABSTRACT* 

In noisy occupational settings, the audibility of acoustic 
alarms is crucial to alert workers to potential dangers. To 
ensure the audibility of warning signals, the international 
standard ISO 7731 requires that alarms be “clearly audible” 
and provides the level to play the auditory alarms relative to 
ambient noise. However, the expression “clearly audible” is 
not defined and the level specifications lead to excessive 
alarm levels for high noise levels, thereby exposing workers 
to dangerous high sound levels. In order to ensure that 
alarms are audible without being excessively loud, the goal 
of our work is to propose an automatic approach to assess 
their audibility at supraliminal levels, thus avoiding having 
to test them experimentally. Our contribution is: (1) the 
development of an experimental method to assess the 
audibility of the alarms according to ISO 7731; (2) using 
this method, the collection of extensive perceptual data on a 
minimum of 12 normal-hearing listeners (minimum 2000 
training samples involving 70 alarms and 50 noises); (3) the 
development of a convolutional neural network that is 
learned and evaluated from the perceptual data, showing 
strong generalization; (4) a detailed analysis of both the 
evaluation data and the model performance. 
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1. INTRODUCTION 

The ability to perceive and respond to auditory danger 
signals in work areas is paramount for ensuring workplace 
safety and preventing accidents. To ensure that acoustic 
alarms are easily heard and recognized in their intended 
environment, the ISO 7331 standard [1] requires alarms to 
be “clearly audible” and establishes a set of three criteria 
based on time-averaged technical measures.  
It should be noted that, in the field of psychoacoustics, the 
expression “clearly audible” lacks a clear and precise 
meaning. According to the standard, an alarm is “clearly 
audible” if at least one of the three criteria is met. The first 
criterion, which requires a 15 dB-difference between the 
respective A-weighted sound pressure levels of the signal 
and the ambient noise, is the most frequently used because 
of its low complexity. However, it leads to excessive alarm 
levels, especially in very noisy work environments [2]. A 
15 dB signal-to-noise ratio (SNR) between the alarm and 
the ambient noise may therefore be counterproductive from 
the point of view of occupational health and safety, since it 
can cause permanent damage to the workers' auditory 
system or startle reactions that put them at risk [1, 2]. 
In the context of occupational health and safety, it is 
imperative to find an optimal balance to ensure that alarms 
are audible enough to produce an adequate reaction without 
being excessively loud. Faced with the plurality of criteria 
proposed in the literature, Laroche et al. point out the lack 
of guidelines systematically used in the field to set the level 
of auditory alarms [3]. At this point, there are two solutions 
available. The first solution is to adjust alarm levels based 
on listening tests. Nevertheless, it is time-consuming and 
limited by its stimulus-dependent aspect, since the 
perception of an alarm in noise relies on spectro-temporal 
characteristics of both the signal and the noisy 
background [4]. Consequently, any change in the alarm or 
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background noise requires new listening tests, making this 
approach unsuitable for an application to a wide range of 
signals. The second solution is to use predictive approaches 
such as existing auditory models. Several models have 
demonstrated good reliability in predicting masked 
thresholds of signals in complex acoustic 
environments [5, 7]. However, these models are limited to 
predicting detection thresholds and do not provide 
information about perception of target signals at higher 
levels, which is necessary for auditory alarms. Furthermore, 
using such models to adjust the level of acoustic alarms 
would require an explicit criterion for assessing whether an 
alarm is “clearly audible” or not. Yet, such criterion does 
not exist, as the expression “clearly audible” remains 
undefined. 
In this study, we propose a deep learning-based approach to 
address the problem of characterizing alarm signals as 
“clearly audible” or not “clearly audible”. As a data-driven 
paradigm, supervised learning can effectively accomplish 
this task by using knowledge acquired from training 
examples. Previous studies have shown the high accuracy 
of deep neural networks in audio classification tasks [8], 
indicating their proficiency at learning intricate patterns in 
audio data. 
The present work has a dual purpose. First, through an 
experiment carried on normal-hearing subjects, it aims to 
clarify the term “clearly audible” expressed in the ISO 7731 
standard as a requirement for acoustic alarms in work areas. 
Second, it introduces an automatic approach using a 
convolutional neural network (CNN) to predict the 
audibility of alarms in noise. In this paper, we report the 
method employed to experimentally assess the audibility of 
acoustic alarms in noise. We also describe the development 
of a CNN, trained and evaluated on the experimental data. 
The results will be presented at the conference.  
  

2. METHODS 

2.1 Experimental evaluation of audibility 

Most of the time, the notion of audibility refers to the 
probability of detecting a sound under specific conditions. 
Thus, one may consider to study the question of the 
audibility of acoustic alarms in noise through masked 
thresholds. However, in order to effectively elicit a 
response, danger signals must be played at levels well 
above these masked thresholds. According to different 
studies, alarms should exceed the masked thresholds by 12 
to 25 dB for optimal use [3, 9-11], but such a wide range is 
of limited interest for practical application. As a result, the 

masked threshold for a given alarm is not sufficient to 
establish a reliable audibility criterion. In order to 
thoroughly investigate the perception of audibility in 
relation to acoustic alarms and critically examine the 
terminology used in the standard, we designed an 
experiment that included both the measurement of masked 
threshold, and the assessment of the “clearly audible” 
attribute of auditory warning signals in noise. The results of 
this experiment will allow for an analysis of the 
relationships between detectability and perceived 
“audibility” of warning signals at higher levels, as well as a 
comparison with the recommendations of the standard. 

2.1.1 Participants 

Twenty volunteers between 20 and 50 years old took part to 
the experiment. They all had an average tone loss of less 
than 20 dB HL across the frequencies 500 – 1000 – 2000 – 
4000 Hz. They received financial compensation for the time 
spent on the experiment. 

2.1.2 Stimuli and material 

The stimuli were 5.5-second mono sound clips, created 
by mixing an alarm with a field recording of a noisy 
workplace. The alarms and backgrounds were collected 
from multiple sources, either public (Freesound [12], 
BigSoundBank [13]) or personal recordings. The signals 
were split into five contextual categories: (1) 
construction noise and reverse alarms, (2) railway and 
construction noise, warning signals for track workers, (3) 
urban traffic and car horns, (4) factory noise, 
miscellaneous buzzers and indoor warning signals, (5) 
locomotive cab noise, warning signals for train drivers. 
Each category contained 2 backgrounds and 3 alarms. In 
total, we created 30 alarm-background pairs by 
associating the alarms and backgrounds within each 
category. Mixing was performed by adding the alarm to 
the noise with a pseudo-random temporal onset, 
carefully controlled to avoid onsets too close to the 
beginning or the end of the clip.  
The experiment took place in a soundproof room. The 
stimuli presentation and participant responses were 
managed by a custom MATLAB application. The signals 
were processed through an RME Babyface Pro 
soundcard and presented over circumaural headphones 
(Beyerdynamic DT 770 Pro), calibrated with Larson 
Davis AEC101 artificial ear and Model 824 sonometer. 

2.1.3 Procedure 

The experiment was made of two tasks alternating in a 
random order: a detection task, and an audibility 
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assessment. In both tasks, the 30 alarm-background pairs 
were evaluated, and the stimuli were presented in a random 
order for each participant. 
The detection task was based on a two-alternative forced 
choice paradigm and the method of constant stimuli. A trial 
consisted in a presentation of two consecutive intervals 
spaced with a 500 ms pause. The two intervals contained 
the same background noise, but only one of them contained 
an alarm. After the end of the second interval, the 
participants were asked to report in which of the two 
intervals they had heard the alarm. Six different SNRs, 
spanning from -30 to 0 dB, were used to present the stimuli. 
The experiment included two levels of noise, namely 60 
and 80 dBA. For a given SNR and noise level, each clip 
was presented three times per listener. 
For the audibility assessment, the participants were 
instructed to listen passively and not to focus on detecting 
alarms. This task followed a Yes-No design, using the 
method of constant stimuli. In a trial, the listeners were 
presented with a single clip containing the alarm-
background mix. After the presentation, they had to respond 
with either “yes” or “no” to the question “Was the alarm 
clearly audible?”. The stimuli were presented at six SNRs 
ranging from -22.5 to +10 dB, and two levels of noise: 60 
and 80 dBA. As in the detection task, each condition was 
repeated three times per listener. 

2.2 Audibility prediction using a CNN 

To predict the audibility of acoustic alarms using deep 
learning, a model was trained to perform the same audibility 
assessment as in the human experiment. This amounts to 
define the problem as a binary classification task. Taking 
spectro-temporal representations of the 5.5-second sound 
clips as input, our model is designed to produce a binary 
prediction indicating whether the alarm in the clip is 
“clearly audible” or not. 

2.2.1 Dataset 

The dataset contains 5.5-second alarm-background mixes as 
described in Section 2.1. These signals come with 
perceptual annotations, that are the responses of the 
participants to the question “Was the alarm clearly 
audible?”. The dataset is composed of two subsets that 
were not collected at the same time: development (training 
and validation) and evaluation. 
To evaluate the model, we need reliable and interpretable 
data. Therefore, the data collected in the experiment from 
Section 2.1 will serve as evaluation data, since the 
annotation procedure is well controlled and follows the 
standards of usual psychoacoustical experiments (repeated 

measures design, fixed SNRs and noise levels, multiple 
repetitions per participant). As a result, the evaluation 
subset contains 360 sound clips (30 alarm-background pairs 
at 6 SNRs and in 2 levels of noise), each clip having 60 
annotations. 
In contrast, development subset does not require as much 
constraints as the evaluation subset. For development, we 
have 2000 clips, made with completely different alarms and 
backgrounds than the evaluation subset, all downloaded 
from the Freesound database. The alarm-background pairs 
were generated randomly among a total of 70 alarms and 52 
backgrounds. Each clip was mixed at a random integer 
SNR between -30 and +15 dB. The noise level was 
randomly selected to be either 60 or 80 dBA. The clips 
were all annotated by 10 listeners, with 8 of these listeners 
providing annotations for both the development and 
evaluation subsets. To speed up the data collection, in the 
annotation procedure, each clip was presented only once per 
annotator instead of three times for the evaluation subset. A 
20% of this data was randomly split for validation purposes. 
For both development and evaluation, since all the clips 
were annotated by multiple listeners, the final labels for 
each clip (0: not clearly audible, 1: clearly audible) were 
obtained based on the majority responses. 

2.2.2 System 

The first stage of the system is feature extraction, that is, the 
computation of the spectro-temporal representations used 
by the model. For that purpose, the signals were sampled at 
a frequency of 44.1 kHz and mel-spectrograms with 64 
coefficients were extracted as input features to the model. 
The extraction process involved a 1024-sample short-time 
Fourier transform (STFT) using a Hamming window with a 
50% overlap. 
The design of the model was guided by both preliminary 
experiments and a review of the existing literature [14-16]. 
The model is a neural network with 4 convolutional layers 
that have 32, 64, 64 and 128 filters, respectively, using a 3-
by-3 kernel size. After every convolutional layer, ReLU 
activations are applied followed by max pooling along the 
frequency axis, with kernel sizes 4, 4, 2, and 2, respectively. 
The activations of the last convolutional layer are then 
stacked along frequency axis and passed through a time-
distributed fully connected layer and sigmoid activation. 
The output representation, of size (128, 1), is finally 
subjected to Lp aggregation with parameter p = 5. 
Following aggregation, we obtain a value that ranges from 
0 to 1, which tends to approach 1 when the alarm sound in 
the clip is clearly audible, and 0 when it is not. 
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3. CONCLUSION 

The aim of this study is to provide a precise definition of the 
term “clearly audible” as a requirement for acoustic alarms 
in work areas and proposes an automatic approach using a 
convolutional neural network to predict the audibility of 
auditory danger signals in noisy work environments. An 
experiment was designed to evaluate the audibility of 
acoustic alarms. It encompasses the measurement of 
masked thresholds and the assessment of the “clearly 
audible” attribute of auditory danger signals in noise in 
order to establish a reliable audibility criterion. The 
proposed approach using a convolutional neural network 
has the potential to provide an automated solution for 
adjusting alarm levels in noisy work environments. The 
experiment is still ongoing, and the results of the study, 
including model performance, will be presented at the 
conference.  
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