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ABSTRACT

Parabolic equation based methods are widely used in en-
vironmental acoustics because they can accurately model
acoustic propagation of complex sound sources above a
mixed ground in a refractive and scattering atmosphere.
The present paper proposes an open-access model based
on the wide-angle parabolic equation (WAPE) in moving
medium for arbitrary Mach numbers. The WAPE is de-
rived by an expansion of a square-root pseudo-differential
operator using Padé(1,1) approximant in one-way wave
equation. It is then solved by a finite-difference technique
based on Crank-Nicholson method, and is valid for prop-
agation angle up to 35° with respect to the nominal di-
rection. The paper describes both the validation process
against an analytical solution, and the platform for on-line
open-access, including comments and examples of numer-
ical predictions for end-users.
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1. INTRODUCTION

The parabolic equation (PE) approximation method is an
important contribution to the modeling of wave propaga-
tion as it can solve problem of long-range wave propaga-
tion in a range-dependent environments. It was first in-
troduced to solve electromagnetic problems [1] and was
then applied in other scientific field such as ocean acous-
tics [2, 3], geophysics [4] or outdoor acoustics for exam-
ple [5–11]. The main limitations of the PE methods are
the small validity angle with respect to the nominal prop-
agation direction and phase error due to effective sound
speed approximation, which have been addressed quite re-
cently [12–14]. However, despite the popularity of the PE
methods, there are few open-access repositories allowing
its sharing in the outdoor acoustics community.

Thus, this paper aims at sharing an open-access repos-
itory [15] of a wide-angle parabolic equation model based
on a Padé (1,1) approximation and a numerical resolution
with the Crank-Nicholson algorithm. The code is written
in Matlab language. It differs from the version proposed
in [14] by incorporating the effects of ground roughness
(see Section 2.3). The paper is organised as follow: the
Sec.2.1 presents the theory of the WAPE in moving and
motionless medium, the Sec.2.2 presents the numerical
solution of the WAPE with the Crank-Nicholson algo-
rithm, the Sec.2.3 and Sec.2.4 review the ground effects
modelling and atmosphere modelling, the Sec.3 presents
a validation of the WAPE with an analytical solution for
constant wind, and finally the Sec.4 gives the conclusions.

2. REVIEW OF THEORY

2.1 WAPE in moving and motionless medium

An extra-wide-angle parabolic equation (EWAPE) for
sound wave propagation in a moving medium with ar-
bitrary Mach numbers Mx have been proposed recently
[14]. In a two-dimensional vertical plane (x, z) and as-
suming that the air density ρ0 is a constant, Equations (27)
and (39) of [14] for the sound pressure p̂(x, z) and for the
velocity potential ϕ̂(x, z) in the frequency domain reduce
to:

p̂(x, z) =

(
1 +

iMx

k0

∂

∂x

)
ϕ̂(x, z), (1)(

∂

∂x
− ik0γ

2
x

√
1 + ε+ µ̂+ ik0τ̂

)
ϕ̂(x, z) = 0, (2)

where k0 = ω/c0 is the wavenumber, c0 is the reference
sound speed, γ2

x = 1/(1 − M2
x), ε = (c0/c)

2 − 1 is the
deviation of the refractive index, µ̂ = 1

γ2
xk

2
0
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Mxγ
2
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As suggested by [14], the square-root operator in
Eq.(2) can be approximated with a Padé (n, n) series ex-
pansion. The present work considers a Padé (1,1) which
lead to a 35◦ validity angle with respect to the horizontal
direction x [16, 17]. Introducing the variable ϕ̄ related to
the velocity potential ϕ̂ by ϕ̂(x, z) = exp(ik0x)ϕ̄(x, z),
where ϕ̄ is discretized using a Cartesian mesh of size
∆x = ∆z = λ/10: ϕn

m = ϕ̄((m − 1)∆x, (n − 1)∆z)
with λ the wavelength. The Eq. (2) then becomes:

Ψ1(x, z)
∂ϕ̄

∂x
= ik0Ψ2(x, z)ϕ̄, (3)

where the functions Ψ1 and Ψ2 are given by:

Ψm = hm,0 +
hm,2

k20

∂2

∂z2
, m = 1, 2. (4)

The coefficients hm,j are defined as h1,0 = 1 + b1,1ε,
h1,2 = b1,1/γ

2
x, h2,0 = a1,1γ

2
xε − (1 + b1,1ε)τ̃ ,

and h2,2 = a1,1 − b1,1τ̃ /γ
2
x, with a1,1 = 1/2 and

b1,1 = 1/4. The function τ̃ is written:

τ̃ = Mxγ
2
x(
√
1 + ε−Mx) = τ̂ −M2

xγ
2
x. (5)

In a second step, the acoustic pressure p̂ can be cal-
culated from ϕn

m at xm = m∆x and zn = n∆z using a
second-order centered finite difference scheme [14]:

p̂(xm, zn) = eik0xm

[
(1−Mx)ϕ

n
m +

iMx

2k0∆x

[
ϕn
m+1 − ϕn

m−1

]]
,

(6)
where the starting field is defined as [17]:

ϕ̄(0, zs) =
√
ik0(A0 +A2k

2
0z

2
s)e

− k2
0z2s
B , (7)

with A0 = 1.3717, A2 = −0.3701, B = 3, zs = z − hs,
and hs is the source height.

2.2 Numerical solution of the WAPE in moving
medium

The Crank-Nicholson algorithm can be used to reduce
Equation (3) to a matrix system that can be solved nu-
merically from x to x+∆x:

[
Ψ1 −

ik0∆x

2
Ψ2

]
ϕ̄(x+∆x) =

[
Ψ1 +

ik0∆x

2
Ψ2

]
ϕ̄(x),

(8)

where the terms Ψ1 and Ψ2 can be written:

Ψ1 = 1 +
ε

4
+

1

4k20γ
2
x

∂2

∂z2
, (9)
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xε

2
−

(
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ε

4

)
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(2γ2
x − τ̃)

4k20γ
2
x

∂2

∂z2
. (10)

The second derivative with respect to z is estimated
using a second order finite difference scheme:(

∂2

∂z2

)
ϕn
m =

ϕn+1
m − 2ϕn

m + ϕn−1
m

k20∆z2
. (11)

The numerical scheme associated with the Crank-
Nicholson algorithm for the WAPE method is thus:

M1ϕ
n
m+1 = M2ϕ

n
m, (12)

where the matrices M1 and M2 are given by:

M1ϕ
n
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(14)

The matrix M1 in Equation (13) is tridiagonal with
diagonal elements

bn =

[
1 +

ε

4
− ik0∆x

2

(
γ2
xε

2
− (1 +

ε

4
)τ̃

)
−2− ik0∆x(2γ2

x − τ̃)
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2
x∆z2

]
, (15)

and off-diagonal elements

an = cn =

[
2− ik0∆x(2γ2

x − τ̃)
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2
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]
. (16)
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Similarly, the matrix M2 in Equation (14) is tridiagonal
with diagonal elements

en =

[
1 +

ε

4
+

ik0∆x

2

(
γ2
xε

2
− (1 +

ε

4
)τ̃

)
−2 + ik0∆x(2γ2
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4k20γ
2
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]
, (17)

and off-diagonal elements

dn = fn =

[
2 + ik0∆x(2γ2

x − τ̃)

8k20γ
2
x∆z2

]
. (18)

The boundary condition at z = 0 (n = 1) written with
respect to the admittance βeff can be obtained by using
the centered second order scheme at the fictitious point
z = −∆z:

ϕ2
m − ϕ0

m

2∆z
+ ik0βeffϕ

1
m = 0. (19)

The first lines of the matrices M1 and M2 are changed
accordingly, with modified coefficients:

c1g = 2c1, b1g = b1 + 2ik0∆zβeffc1,

f1g = 2f1, e1g = e1 + 2ik0∆zβefff1.

The expression of βeff is detailed in the next section.

2.3 Ground impedance model

The domain is bounded by a ground with an acoustic
impedance condition at z = 0. The acoustic properties
of the ground are taken into account by an effective admit-
tance model [18] that considers sound absorption by pores
and sound scattering by the surface roughness. The imple-
mentation of this model in the parabolic equation method
has been validated [10]. The effective admittance βeff is
defined as:

βeff = β + βrough =
1

Z
+ βrough, (20)

where β is the acoustic admittance of the ground, Z is the
acoustic impedance of the ground and βrough is the aver-
age effect of surface roughness on admittance. For ex-
ample, the impedance Z can be calculated using Miki’s
impedance model [19]:

Z

Z0
= 1 + 6.17

(
ρ0f

afr

)−0.632

+ i9.44

(
ρ0f

afr

)−0.632

(21)

k

k0
= 1 + 8.73

(
ρ0f

afr

)−0.618

+ i12.76

(
ρ0f

afr

)−0.618

,

(22)

where Z0 = ρ0c0 is the specific impedance of air, ρ0 is
the density of air, k0 is the wavenumber in the air, k is the
wavenumber for sound waves in the ground, f = ω/2π is
the frequency of the sound and afr is the ground airflow re-
sistivity (kN·s·m−4). This model has a frequency validity
range defined by the relation f > 0.01 afr/ρ0 [20].

The expression for βrough corresponds to a 2D rough
surface with a small and slowly-varying roughness [21],
valid under the condition |k0ζ cos θi| < 1 and |∂ζ/∂x| <
1. The term ζ (m) is the roughness height profile of the
ground and θi is the angle between the incident wave and
the line perpendicular to the ground surface. The parame-
ter βrough is given by:

βrough(κ) =

∫ +∞

−∞

dκ′

k0kz(κ′)
(k2

0 − κκ′)W (κ− κ′), (23)

where κ = k0 sin θi is the x component of the wavenum-
ber, κ′ is the integration variable, kz(κ) =

√
k20 − κ2 is

the z component of the wavenumber, and W is the rough-
ness spectrum of the ground, corresponding to the Fourier
transform of the autocorrelation function of the surface
height profile. Considering that the probability density of
the ground roughness heights is a normal distribution, W
is defined as:

W (k) =
σ2
hlc

2
√
π
e−

k2l2c
4 , (24)

where σh is the standard deviation of the ground rough-
ness heights and lc is the correlation length of the hori-
zontal variations of the ground.

The Eq.(23) can be rewritten and numerically solved
with the following formulation [22]:

a =
∑
s=±1

∫ √
k0

0

[k20 + sκ(k0 − u2)]2

k0
√
−u2 + 2k0

×W (κ+ s[k0 − u2])du

(25)

b = −
∑
s=±1

∫ +∞

0

[k20 + sκ
√
k20 + u2]2

k0
√
k20 + u2

×W

(
κ+ s

√
k20 + u2

)
du.

(26)
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2.4 Atmospheric effects

The refraction effect is considered through the wind verti-
cal profile U(z) and temperature vertical profile T (z):

U(z) = Uref

(
z

zref

)α

, (27)

T (z) = T0 + aT ln
z

z0
, (28)

where Uref (m/s) is the wind speed at height zref above
the ground level, z (m) is the height above the ground, α
is the wind shear factor, T0 (K) is the air temperature at
the ground surface, aT (K/m) is a refraction coefficient
that determine the shape of the temperature profile, and
z0 = 0.13hv (m) is the roughness height that depends
on vegetation height hv (m). The Mach number in the
direction of propagation is thus defined as:

Mx = U(z) cos θ/
√
ΓRgT (z) (29)

where Γ = 1.41 is the heat ratio, Rg = 286.7 is the perfect
gas constant and θ is the angle between the wind direction
and source-receiver direction (rad).

Atmospheric absorption is considered in accordance
with the standard [23], which depends on air temperature
T (K), atmospheric pressure patm (Pa) and relative humid-
ity hr (%).

Atmospheric turbulence scattering effect can be ap-
proximated by adding a scattering contribution SPLscatter

to the free field attenuation term in refracting atmosphere
that neglect turbulent scattering SPLnoscatter, as proposed
in the Harmonoise project [24, 25]. Although this ap-
proach does not consider complex phase effects related
to atmospheric turbulence, it has the advantage of being
fast in computing duration and it simulates realistic sound
pressure levels in the interference pattern regions and in
the shadow zone. The attenuation term ∆L is thus given
by:

∆L = 10 log10

(
10

SPLnoscatter
10 + 10

SPLscatter
10

)
, (30)

with:

SPLscatter = 25 + 10 log10 γT

+ 3 log10
ω

1000
+ 10 log10

r

100
,

(31)

where r (m) the source-receiver distance, and γT a mea-
sure of turbulence strength [25].

3. VALIDATION OF WAPE MODEL AGAINST AN
ANALYTICAL SOLUTION

Following [14], the implementation is validated against an
analytical solution for uniformly moving medium (con-
stant wind vertical profile), in presence of a perfectly flat
and rigid ground.

Figure 1 presents results for frequencies f = 50 Hz,
250 Hz and 1000 Hz with a point source located at z =
80 m, a Mach number of Mx = 0.05, and a receiver height
zr = 2 m. This geometrical configuration has been chosen
to present a comparison with interference patterns. Re-
sults show that the PE method do not predict sound pres-
sure accurately in close range up to 150 m, which is due
to the angular validity of the method. There is a good
agreement between the WAPE and the analytical solution
for distances above 150 m, which is consistent with the
results of [14].

4. CONCLUSION

This paper presented an open-access repository for a
wide-angle parabolic equation model for sound propa-
gation in a moving atmosphere above an absorbing and
rough ground [15]. The theory of the WAPE in moving
medium has been reviewed, the numerical solution of the
WAPE has been given according to the Crank-Nicholson
algorithm, ground impedance model and the modelling of
atmospheric effects have been detailed. A validation of
the WAPE model against an analytical solution for con-
stant wind is finally proposed, where results show an ex-
cellent agreement between the two formulations in the far
field (distances above 150 m).
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Figure 1. Comparison of sound pressure relative to
free field ∆L calculated with the analytical formula-
tion (black line) and the parabolic equation solution
(red line) for f = 50 Hz (top), f = 250 Hz (middle)
and f = 1000 Hz (bottom).
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