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ABSTRACT

In this paper, a simple Timoshenko beam theory (STBT)
is proposed and a radiative energy transfer model (RETM)
based on STBT theory is established. The appropriate ro-
tational inertia of Timoshenko beam theory (TBT) is dis-
cussed and the effects of two forms of rotational inertia
on the high frequency vibration of a transverse vibrating
beam are evaluated. Based on elastic theory and wave
propagation theory, it is found that when the frequency is
higher than the critical frequency, there is a second spec-
trum in TBT theory, which has no obvious physical sig-
nificance. On the other hand, the so-called slope inertia
Bresse Timoshenko (SIBT) is neither consistent nor accu-
rate when the wavelength of the vibrating beam is close
to the height of the beam. The theory cannot be used for
vibration analysis above the critical frequency. By numer-
ical analysis of the surface, the simple Timoshenko the-
ory established in this paper and the energy model of high
frequency vibration are very direct and effective. The ef-
fectiveness and simplicity of this model are verified by
comparing it with several beam theory wave propagation
methods.

Keywords: Timoshenko beam theory (TBT), rotary iner-
tia, wave velocity, RETM

*Corresponding author: hbchen@ustc.edu.cn.
Copyright: ©2023 First author et al. This is an open-access
article distributed under the terms of the Creative Commons At-
tribution 3.0 Unported License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the orig-
inal author and source are credited.

1. INTRODUCTION

There are several beam theories that describe the dynamic
behavior of beams or beam-like structures, the classical
theories are Euler-Bernoulli beam theory (i.e. classical
beam theory), Timoshenko beam theory (i.e. first-order
shear beam theory), etc. Euler-Bernoulli beam theory
(EBT) does not consider shear deformation and rotational
inertia, will overestimate the frequency of the structure,
so it is more suitable for thin beam structure [1]. Rayleigh
beam theory takes into account the rotational inertia of the
structure, which alleviates the frequency overestimation
problem to some extent [2]. Pure shear beam theory takes
into account the effect of shear deformation and has cer-
tain applicability to short and thick beam structures. Tim-
oshenko beam theory (TBT) takes into account first-order
shear deformation and rotational inertia, which improves
the accuracy of non-slender beams and is widely used in
engineering [3]. Although a great deal of research has
been done on TBT in recent years [4–7], there are still
some interesting issues worth exploring. First of all, the
most controversial phenomenon is the existence of two
spectrum TBT, two different frequencies correspond to
different modes [8–10]. Some scholars believe that the
second spectrum is physically meaningless [11, 12], and
some scholars support the existence of the second spec-
trum. The second spectrum in TBT is derived from the
fourth time derivative term, which is indeed of no obvious
physical significance. Meanwhile, compared with other
terms, the effect of the fourth time derivative term on the
spectrum is very small and can be ignored. Love [13] pro-
posed an improved Timoshenko beam by removing the
fourth time derivative term, known as a truncated Bresse-
Timoshenko beam [14]. It has been pointed out that the
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Love beam theory, although more simple and consistent,
cannot be deduced from the variation.

More recently, Elishakoff et al. [15–17] proposed a
Timoshenko beam based on slope inertia (SIBT) by us-
ing deflection slope instead of bending rotation in the ki-
netic energy expression. The fourth time derivative term
of the Timoshenko beam is eliminated while a new sixth
order term is introduced. Although Elishakoff proposed
that the derivation and application of SIBT has some ad-
vantages over Timoshenko beam, it is found that the vari-
ational process is inconsistent with the original displace-
ment field form and that there is no elastic wave propaga-
tion beyond the critical frequency. In this study, the phys-
ical significance of the two spectra of TBT is no longer
entangled. From the perspective of wave propagation, the
beam model suitable for high-frequency vibration is estab-
lished by taking the appropriate moment of inertia. Com-
pared with other beam theories, the model is simpler in
form and meets the requirements in accuracy.

2. THEORETICAL FORMULATION

2.1 Different rotational inertia in beam theories

Figure 1. Timoshenko beam model

According to the Timoshenko beam theory, the ax-
ial displacement ux(x, z, t) and transverse displacement
uz(x, z, t) could be expressed as follows:

uz (x, z, t) = w (x, t) , ux (x, z, t) = −zφ (x, t) . (1)

w(x, t) is the displacement components of the mid-plane
along z direction and ϕ(x, t) is the rotation angle of the
cross section. The normal strain and shear strain related

to the displacements are respectively written as:{
εxx
γxz

}
=
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∂ux
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∂x

}
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The vibrational energy of beam is composed of the poten-
tial energy Ue and kinetic energy T ,
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where Wf is the work provided by external forces f ,
which is assumed in the form of f(x, t) = Feiωtδ(x−x0),
i is the imaginary unit, ω is circular frequency, D11 is the
bending stiffness, C13 is the out of plane shear rigidity, ID
is the moment of inertia of the cross-section and m is the
mass per unit length. The expressions of these parameters
are as follows:

D11 = b

∫ h/2

−h/2

Ez2dz, C13 = b

∫ h/2

−h/2

sGdz,

ID = b

∫ h/2

−h/2

ρz2dz,m = b

∫ h/2

−h/2

ρdz.

(4)

s is the correction factor, for beams with rectangular
cross-sections, taking 5/6 for s is reasonable.

The Lagrangian of the bending motion of the FG
beam could be written as L = T − (Ue + UT ) + Wf

and the motion governing equation could be obtained by
applying Hamilton’s principle as follows:

δw : m
∂2w

∂t2
− C13(

∂2w

∂x2
− ∂φ

∂x
) = Feiωtδ(x− x0),

δφ : D11
∂2φ

∂x2
− ID

∂2φ

∂t2
+ C13(

∂w

∂x
− φ) = 0.

(5)
Eliminating variable w or φ in Eq. (5), the governing
equations for transverse displacement is derived as fol-
lows:

D11
∂4w

∂x4
+m

∂2w

∂t2
− (ID +

mD11

C13
)

∂4w

∂x2∂t2

+
mID
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∂t4
= (1− IDω2

C13
)Feiωtδ(x− x0).

(6)
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The form of rotational kinetic energy in TBT is consistent
with the displacement field, so the governing equation can
also be derived by force equilibrium, which is consistent
with the variational process.

SIBT theory expresses rotational kinetic energy in the
form of slope inertia,

T =
1

2

∫ L

0

[
ID

(
∂2w

∂x∂t

)2

+m

(
∂w

∂t

)2
]
dx, (7)

and then the governing equation is derived as:
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(8)

If the rotation term ID
∂2φ
∂t2 in Eq. (5) is replaced by

ID
∂3w
∂x∂t2 from the point of view of force balance, a simpler

governing equation is obtained as follows:

D11
∂4w

∂x4
+m

∂2w

∂t2
−
(
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)
∂4w

∂x2∂t2
= 0 (9)

In fact, this rotation pattern is consistent with the rayleigh
beam theory, and the governing equation is much sim-
pler. We can call it the simple Timoshenko beam theory
(STBT).

2.2 Wave propagation and energy model

The analysis of high frequency vibration is based on wave
theory and energy model. Firstly, the wave propagation
under several theories is compared. In the unloaded re-
gion of the beam, the dispersion equation for the free vi-
bration of the beam could be obtained by substituting the
traveling wave form as w(x, t) = w0e

i(ωt−κx) into the
homogeneous form of Eqs. (6, 8 and 9).

D11κ
4 −mω2 −

(
ID +

mD11

C13

)
κ2ω2 + µ1

mD11

C13
ω4

− µ2
IDD11

C13
κ4ω2 = 0

(10)
When µ1 = 1, µ2 = 0, Eq (10) is the dispersion equation
of TBT; When µ1 = 0, µ2 = 1, Eq (10) is the disper-
sion equation of SIBT; When µ1 = 0, µ2 = 0, Eq (10)
is the dispersion equation of STBT. There is critical fre-

quency ωc =
√

C13

ID
in TBT and SIBT, which determines

the propagation of waves in both theories. The roots of
Eq. (10) are as follows:
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√
N1, κ2 = −

√
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√
N2, κ4 = −

√
N2,

(11)
where
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(
ID + mD11
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)
ω2 ±∆

2
(
D11 − µ2

IDD11

C13
ω2

) , (11a)

∆ is the discriminant of the roots. There are two wave
propagation modes in TBT. When frequency f < fc,
κ1 and κ2 are propagation waves with opposite propaga-
tion directions, κ3 and κ4 are evanescent waves. When
f > fc, all waves are propagating waves. In SIBT, When
f < fc, κ1 and κ2 are propagation waves with opposite
propagation directions, κ3 and κ4 are evanescent waves.
When f > fc, all waves are evanescent waves. There-
fore, SIBT is not suitable for high frequency vibrations. In
STBT, the wave propagates all the time and is not limited
by the critical frequency. The phase velocity cp and group
velocity cg can be obtained from the dispersion relation
of Eq (10), which are the key parameters for building the
energy model.

cp =
ω

κ
, cg =

∂ω

∂κ
. (12)

The energy methods commonly used in high-frequency
vibration include statistical energy analysis (SEA), en-
ergy flow analysis (EFA), energy finite element method
(EFEM) and radiative energy transfer method (RETM).
This paper takes RETM as an example to illustrate the dif-
ferences between several beam theories in high frequency
analysis.

The main variables in RETM are energy density W
and energy flow intensity I, and the energy balance rela-
tionship could be established as follows:

dI

dx
+ Pdiss = Pin, (13)

where Pin is the input power provided by the lateral load
and Pdiss is the dissipated power density related to damp-
ing, which is the same as in SEA with Pdiss = ηωW ,
where η is the hysteretic damping loss factor of structures.

From the equivalent relationship between the energy
propagation velocity and the group velocity,

Ii = cgiWi,
d (cgiWi)

dx
+ ηωWi = Pin,i. (14)

The subscript i represents the different types of waves,
and the particular solution of Eq. (14), which is the free-
field solution of the wave, can be written as follows:
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Wi = Pin,iGi (S,R) , (15)

where Gi(S,R) is the kernel function of the energy den-
sity, which represents the energy of the receiving point R
caused by the unit excitation in the free field at the point
S, it could be expressed as follows:

Gi (S,R) =
e−mir(S,R)

2cgi
, (16)

where r(S,R) represents the distance between the excita-
tion source S and the receiving point R, and mi = ηω/cgi
is the energy attenuation coefficient related to damping.
Similarly, the energy intensity could be expressed as fol-
lows:

Ii = Pin,iHi (S,R) , Hi (S,R) =
e−mir(S,R)

2
n (S,R) ,

(17)
where n represents the unit vector between the source S
and the receiving point R, which could be expressed as a
sign function as n(S,R) = sign(R− S).

The energy of the entire vibration field could be con-
sidered to be composed of the direct field and the reflected
field. The energy of the reflected field is replaced by fic-
tive sources set at the boundary. One of the advantages
of this model is that the Huygens principle could be di-
rectly applied, that is, the most general field arises from
the superposition of the direct field produced by the ac-
tual source Pin,i located at S in the domain Ω, and the
diffracted field produced by the fictive source σi located
at P on ∂Ω. All these considerations are summarised by
the following relationships:

Wi (R) =

∫
Ω

Pin,i (S)GidS +

∫
∂Ω

σi (P )GidP,

Ii (R) =

∫
Ω

Pin,i (S)HidS +

∫
∂Ω

σi (P )HidP.

(18)

Thus, the energy of any receiving point on the beam could
be expressed as W (R) = Wα (R) + Wβ (R) , I (R) =
Iα (R) + Iβ (R).

Therefore, wave number and group velocity are im-
portant parameters of the energy equation and its ker-
nel function. TBT and SIBT are limited by the criti-
cal frequency, so it is necessary to establish different en-
ergy models at different frequencies in the energy model,
which is less convenient than STBT.

3. VALIDITY AND DISCUSSION

3.1 Wave propergation in different beam theories

In the case of homogeneous aluminum beams, the geo-
metrical parameters of the beam are adopted as follows:
b = 0.1 m, h = 0.1 m and L = 2 m. Fig. 2 compares
wave number curves with frequency in different beam the-
ories, where ”EB” represents Euler-Bernoulli beam the-
ory, ”Rayleigh” represents Rayleigh beam theory, ”Shear”
represents pure shear beam theory, ”TBT1” and ”TBT2”
represent two types of waves in Tiomoshenko beam the-
ory, ”STBT” represents simple TBT theory. ”R-SIBT”
and ”I-SIBT” represent the real and imaginary parts of the
wave number in SIBT theory, respectively.

Figure 2. Dispersion curves of different beam theo-
ries.

In EB theory, the wave number increases linearly with
frequency, TBT1 increases nonlinearly with frequency ap-
proximately after the critical frequency, and TBT2 ap-
pears after the critical frequency and increases rapidly and
eventually increases to a value less than TBT1. The wave
number in Shear theory is almost the same as TBT1, and
the wave number in Rayleigh theory is the same as TBT2
after the critical frequency. The wave number of STBT
theory is similar to and slightly larger than TBT1, and the
wave number of SIBT is close to infinity near the critical
frequency, after which it no longer propagates into evanes-
cent wave. Thus, the TBT theory seems to be a combina-
tion of Shear theory and Rayleigh theory with two waves
fitting, and SIBT theory does not seem to be applicable to
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Figure 3. Phase velocity of waves with different
beam theories.

high frequency analysis because it does not have propagat-
ing waves at very high frequencies. STBT theory seems to
be the effect of superposition of two waves in TBT theory.

Figure 4. Group velocity of waves with different
beam theories.

Fig. 3 shows the phase velocity curves of waves in
different beam theories. TBT1 and Shear theory are still
very close, but the phase velocity of TBT2 is close to
infinity near the critical frequency, which is an anomaly
and the reason why many researchers question the phys-

ical significance of the two spectra of TBT theory. After
the critical frequency TBT2 is very close to the phase ve-
locity of Rayleigh. STBT is close to TBT1, but slightly
smaller than TBT1 at high frequencies. And SIBT de-
creases sharply to zero after increasing frequency.

Fig. 4 shows the group velocity curves of waves in
different beam theories. The group velocity of EB theory
can increase infinitely with frequency, which shows that
the theory is not perfect. In SIBT, a wave group cannot
propagate at higher frequencies, and the theory cannot be
used for high frequency analysis. The group velocity of
Shear and Rayleigh theory is greater than that of TBT the-
ory at higher frequencies. The group velocity of STBT
theory is close to TBT1 at low frequencies and TBT2 at
high frequencies.

3.2 Energy response

Figure 5. Energy response of different beam theo-
ries, f = 10 kHz, η = 0.1.

In Fig. 5, the energy responses of several beam the-
oretical wave propagation solutions are calculated and
compared with the RETM solutions of STBT theory. EB
theory neglects shear deformation and rotational inertia,
leading to higher energy estimation than other theories.
Although Rayleigh theory considers the effect of rota-
tional inertia, it has not been significantly improved com-
pared with EB beam theory. Although Shear theory only
considers shear deformation, the energy response has been
greatly improved compared with EB and Rayleigh the-
ory. The energy responses of the three beam theories
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(TBT,STBT,SIBT) considering both shear and rotation ef-
fects are similar. The RETM solution of STBT theory is a
smooth curve without fluctuation, which is in good agree-
ment with the results of TBT and STBT.

Figure 6. Energy response of different beam theo-
ries, f = 10 kHz, η = 0.15.

Fig. 6 is a comparison of energy responses of several
beam theories after damping increases to 0.15. The results
of STBT and TBT are very close, and the RETM solution
of STBT is also in good agreement with them. However,
SIBT attenuates greatly with the increase of damping, and
the energy response is much lower than that of STBT and
TBT theory, indicating that SIBT theory is more sensitive
to damping at high frequencies, which can be seen from
the fact that its wave number turns into pure imaginary
number at high frequencies. Therefore, SIBT theory is not
robust in high frequency calculation even if the frequency
does not reach the critical frequency.

Fig. 7 shows the results of different theoretical energy
responses when the frequency is set at 20kHz. The RETM
solution of STBT is still in good agreement with the WPA
solution of STBT and TBT, but SIBT, due to the false
wave number after frequency increase, does not propagate
the wave, leading to the energy response deviating from
the actual value. EB,Rayleigh and Shear theories do not
consider enough shear deformation or rotational inertia in
the initial assumptions. So the result is always higher than
the other three theories.

Figure 7. Energy response of different beam theo-
ries, f = 20 kHz, η = 0.15.

4. CONCLUSION

From the above theoretical comparison and numerical
analysis, the following conclusions can be drawn: TBT
theory does exist the second spectrum phenomenon which
is difficult to explain physically; Although the theoretical
calculation process of TBT is complicated, the results of
energy response are reliable. STBT theory does not have
the second spectrum, and it is very close to the results of
TBT theory. RETM based on STBT theory is a simple and
accurate method, which can be used in the high frequency
analysis of beam structure; SIBT theory is not suitable for
high-frequency analysis of beam structures because of its
theoretical defects
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