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ABSTRACT

Using porous absorbers is common practice in the acous-
tic treatment of rooms. To reduce low-frequency rever-
beration in rooms, the absorber material is often placed
in one or more edges of the room. Such an arrangement
of porous absorbers is commonly known as bass trap or
edge absorber. Edge absorbers have the advantage that,
with relatively little porous absorber material, they ef-
ficiently reduce low-frequency reverberation, for which
there are modal peaks in the room, and do not overattenu-
ate high-frequency reverberation. A finite element model
is employed to simulate the edge absorber’s influence on a
room’s eigenfrequencies, wherein the edge absorber ma-
terial is modeled using an equivalent fluid model. This
results in a nonlinear eigenvalue problem due to the fre-
quency dependence of the porous material parameters.
The paper presents an iterative solution approach to the
nonlinear eigenvalue problem and its application to acous-
tic predictions of edge absorbers. It is shown how edge
absorbers shift and damp the eigenfrequencies of a room.

Keywords: room acoustics, edge absorber, eigen-
value problem, JCAL model

*Corresponding author: kraxberger@tugraz.at.
Copyright: ©2023 Florian Kraxberger et al. This is an open-
access article distributed under the terms of the Creative Com-
mons Attribution 3.0 Unported License, which permits unre-
stricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

1. INTRODUCTION

Porous material (e.g., Basotect®) applied in the edge of
a room has very good absorption properties in the low-
frequency range, because it has a damping property at the
room modes, which has been investigated empirically in
[1–3]. This absorber type is often called bass trap or edge
absorber (EA).

Simulation methods based on geometrical acous-
tics, conventionally used for room acoustics simulations,
are not valid for low frequencies f and/or small geo-
metric dimensions d [4, 5], i.e., the Helmholtz number
He = 2πfd/c is much smaller than one. As a con-
sequence, these simulation methods can not be used for
low-frequency room acoustic simulations, from which the
need for wave-based simulation methods arises. Oku-
zono et al. introduced a Finite Element (FE) model for
room acoustic simulations with impedance boundary con-
ditions (BCs) in [6]. Successively, their model was ap-
plied to simulate a large-scale auditorium [7]. Recently, a
FE model for predicting the effect of EAs on the acous-
tic field in a room enclosed with sound-hard walls, as de-
picted in fig. 1, has been introduced [8]. This model is
able to predict the influence of different configurations of
EAs on the acoustic field, and has been validated using
transfer function measurements in the reverberation cham-
ber (RC) at Graz University of Technology. To model
the porous material, the Equivalent Fluid Model (EFM)
is used as defined in [9] and implemented in the open-
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source FE software openCFS 1 [10, 11]. The frequency-
dependent parameters of the EFM are the complex bulk
modulus Kabs(ω) and the complex (equivalent) density
ρabs(ω). They are defined by the Johnson-Champoux-
Allard-Lafarge (JCAL) model [12], for which the mate-
rial parameters are obtained with a fitting algorithm using
impedance tube measurements, as described in [8, 13].
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Figure 1. Sketch of geometry with air volume Ωair

and absorber volumes Ωabs,1 and Ωabs,2. The ab-
sorber volumes are colored green.

The frequency domain FE problem, as defined in [8],
is to be solved with a maximum analysis frequency of
200Hz. Investigations presented in [8] led to the con-
clusion that EAs influence the modal field by means of
mode frequency shift and amplitude attenuation. Hence,
in this article, the FE problem is reformulated into a
complex-valued nonlinear eigenfrequency problem focus-
ing on isolated low-frequency modes up to a frequency
of approximately 100Hz. The nonlinearity is caused
by the frequency-dependent material parameters Kabs(ω)
and ρabs(ω) of the EFM.

The proposed method can be used for real-world ap-
plications to determine the damped eigenfrequencies and
the corresponding modal damping of a given EA con-
figuration. Compared to running calculations of trans-
fer functions (i.e., a harmonic analysis), the proposed
method allows to evaluate modal damping values directly,
whereas using harmonic simulations, the modal damping
can only be determined indirectly, e.g. by comparing 3dB-
bandwidths.

The paper is organized as follows. In sec. 2, the fi-

1 https://opencfs.org/

nite element model is described, the nonlinear eigenvalue
(EV) problem is defined, and an iterative solution proce-
dure is introduced. In sec. 3, the results of the nonlinear
EV problem are documented. The article is concluded in
sec. 4.

2. METHODS

2.1 Geometry and Discretization

The geometry used for numerical simulations resem-
bles the RC of the Laboratory of Building Physics at
Graz University of Technology, which has edge lengths
lx = 8.34m, ly = 5.99m, and lz = 4.90m. Along the
longest axis of the RC, a porous material (melamine resin
foam Basotect®) is placed, as depicted in fig. 1. In addi-
tion to the empty RC, and considering the cross-sectional
area of the EA, three EA configurations are investigated:
a square cross-section (EA1), a triangular cross-section
pointing inwards (EA2), and a triangular cross-section
pointing outward the RC (EA3). The investigated con-
figurations are depicted in fig. 2.

empty EA1

EA2 EA3

Figure 2. Simulation configurations empty, EA1,
EA2, and EA3. The absorbent material is colored
green.

The geometry is discretized using second-order La-
grangian elements. Due to the different wavelengths in air
and the absorber medium (see [8, fig. 4]), a nonconform-
ing mesh is used. A detailed view of the used mesh is
depicted in fig. 3. The used element size corresponds to
6 elements per wavelength at the maximum analysis fre-
quency of 200Hz.

For the empty RC, the modal frequencies (i.e., the
eigenfrequencies) can be computed using the analytical
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Figure 3. Detail view of the cross-section in the yz-
plane through the nonconforming λ/6-mesh. The ab-
sorber volume is colored green, and the air volume is
colored grey. [8, Fig. 5]

formula [14, p. 220]

f
(nx,ny,nz)
mode,analyt =

c0
2

√(
nx

lx

)2

+

(
ny

ly

)2

+

(
nz

lz

)2

, (1)

where nx, ny , and nz are the mode orders, and
c0 =

√
K0/ρ0 is the speed of sound in air. The modal

frequencies are sorted in increasing order into the vector
fempty.

2.2 Finite Element Formulation

The homogeneous wave equation of acoustic pressure p
in a sound-hard room (i.e., homogeneous Neumann BCs
at the enclosing surfaces) with the EFM is according to [9]

1

K

∂2p

∂t2
−∇ · 1

ρ
∇p = 0 . (2)

Thereby, K is the bulk modulus, and ρ is the density. In-
troducing an isoparametric FE formulation [9,11] with the
ansatz according to

w ≈ wh =
∑
i

Niwi , p ≈ ph =
∑
j

Njuj , (3)

where N are the FE basis functions, the wave equation in
eq. (2) can be formulated in matrix-vector notation as

M
∂2

∂t2
p−Kp = 0 , (4)

where p is the vector of degrees of freedom for (acoustic)
pressure, and stiffness matrix K and mass matrix M are
defined such that

M =

∫
Ω

1

K
whphdx⃗ ,

K =

∫
Ω

∇wh · 1
ρ
∇phdx⃗ .

(5)

For acoustic pressure, the ansatz p = R{p̃est} is intro-
duced, where s is a complex-valued free variable. This
yields the Helmholtz problem in frequency domain, i.e.

s2

K
p̃−∇ · 1

ρ
∇p̃ = 0 ,

s2Mp̃−Kp̃ = 0 .

(6)

The nonconforming interface between absorber and air
volumes depicted in fig. 3 is handled using Nitsche-type
mortaring, for which the FE formulation of the Helmholtz
equation including appropriate interface terms is derived
in [9]. Bulk modulus K and density ρ depend on location
x⃗ and frequency ω, such that

K(ω) =

{
K0 for x⃗ ∈ Ωair

Kabs(ω) for x⃗ ∈ Ωabs
,

ρ(ω) =

{
ρ0 for x⃗ ∈ Ωair

ρabs(ω) for x⃗ ∈ Ωabs
.

(7)

Thereby, K0 = 141 855 N
m2 and ρ0 = 1.2305 kg

m3 are the
bulk modulus and density of air, and Ωair and Ωabs are the
air and absorber volumes, respectively, according to the
configurations defined in fig. 2.

2.3 JCAL Model for Porous Material

The equivalent bulk modulus Kabs(ω) and equivalent den-
sity ρabs(ω) from eq. (7) in the absorber volume are de-
fined according to the JCAL model [12], such that

Kabs(ω) =
γp0/ϕ

γ−(γ−1)
[
1−j κA′

k′
0Cp

√
1+j

4k′2
0 Cp

κΛ′2ϕA′

]−1 ,

ρabs(ω) =
α∞ρ0
ϕ

[
1 +

σA′

jα∞

√
1 + j

4α2
∞η0

σ2Λ2ϕA′

]
,

(8)

where A′ = ϕ/(ωρ0), as well as the six parameters
of the JCAL model, namely open porosity ϕ, static
airflow resistance σ, high-frequency limit of the tor-
tuosity α∞, viscous characteristic length Λ, thermal
characteristic length Λ′, and static thermal permeabil-
ity k′0. Furthermore, the JCAL model needs parame-
ters of air at measurement conditions, namely, dynamic
viscosity η0 = 18.232 · 10−6 kg

m s , thermal conductivity
κ = 25.684 · 10−3 W

mK , isentropic exponent γ = 1.4, am-
bient air pressure p0 = 100 325Pa, and specific heat of
air at constant ambient pressure Cp = 1006.825 J

kgK [8].
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The six JCAL parameters are determined with a fitting
procedure as documented in [13], where the result of the
fitting procedure is listed in [8, tab. 1]. Equivalent bulk
modulus Kabs(ω) and density ρabs(ω) as a result of the fit-
ting procedure are depicted in fig. 4.

To quantify the degree of nonlinearity of the material
parameters, one can expand the JCAL-model into a Taylor
series around an expansion point ω0 = 2πf0, which yields
for Kabs(ω)

Kabs(ω) ≈ K̂abs(ω) =

N∑
i=0

(ω − ω0)
i 1

i!

∂iKabs(ω)

∂ωi

∣∣∣∣
ω0︸ ︷︷ ︸

ai

,

(9)
and for ρabs(ω)

ρabs(ω) ≈ ρ̂abs(ω) =

N∑
i=0

(ω−ω0)
i 1

i!

∂iρabs(ω)

∂ωi

∣∣∣∣
ω0︸ ︷︷ ︸

bi

. (10)

Thereby, ⋆̂ denotes the (N − 1)-th order Taylor series ap-
proximation of ⋆. The complex-valued coefficients ai of
K̂abs(ω) and bi of ρ̂abs(ω) have been computed using the
Matlab function taylor() [15] and are listed in tab. 1.
Using the EFM with the JCAL model results in frequency-
dependent stiffness and mass matrices K(ω) and M(ω).
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Figure 4. Real and imaginary parts of equivalent
bulk modulus Kabs(ω) and density ρabs(ω).

2.4 Generalised Nonlinear EV Problem

From eq. (6), a generalized nonlinear EV problem can be
formulated, such that

K(ω)p = λkM(ω)p , (11)

where λk = s2k are the sought EVs. The eigenvalue λ is
complex-valued and can be written as (omitting the index
k for better readability)

s = −ωnζ ± jωn

√
1− ζ2 = −δ ± jωd ,

λ = s2 = ω2
d − δ2︸ ︷︷ ︸
−α

∓j 2δωd︸ ︷︷ ︸
−β

, (12)

where ωn the undamped angular natural frequency, ωd the
damped angular frequency, δ is the decay constant, and
ζ = δ/ωn is the damping ratio. The values α and β are
the results computed with openCFS. One can compute δ
and ωd from α and β with

γ =
α

2
±
√

α2

4
− β2

4
, δ = ±√γ , ωd =

β

2δ
. (13)

Decay constant δ and damped eigenfrequency ωd are ex-
pected to be real-valued and positive; therefore, the set
of equations (13) has a unique result. The corresponding
damped eigenfrequency is f = ωd/(2π). From δ and ωd,
the damping ratio ζ and ωn can be computed as follows

r =
−δ
ωd

, ζ =

√
r2

1 + r2
, ωn =

ωd√
1− ζ2

. (14)

The nonlinearity is due to the frequency dependence
of stiffness and mass matrices K(ω) and M(ω), respec-
tively, which is evident from the nonzero higher order Tay-
lor series coefficients listed in tab. 1.

2.5 Iterative Solution Procedure

For the EV problem in eq. (11), an iterative solution pro-
cedure is introduced based on the fixed-point method. Let
F : C2 7→ RNEV denote the used FE system, which de-
pends on the two complex-valued material parameters K
and ρ, and maps to a NEV-dimensional vector of eigen-
frequencies. Considering a specific frequency ωk, it maps
the two complex values K(ωk) and ρ(ωk) to the vector of
eigenfrequencies fEV(ωk). Therefore, we can write

fEV(ωk) = F{K(ωk), ρ(ωk)} , (15)

which denotes one execution of the FE implementation
in openCFS for one analysis frequency ωk, at which the
material properties are evaluated, resulting in a vector of
eigenfrequencies fEV(ωk).

In alg. 1, the algorithm used to solve the nonlinear EV
problem is listed. It consists of an outer loop with index
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Table 1. Taylor series coefficients ai of K̂abs(ω) and bi of ρ̂abs(ω) computed with the Matlab command
taylor() for the expansion point ω0 = 100π up to N = 4.

i R{ai} I{ai} R{bi} I{bi}

0 8.551 −8.832 1.058 −251.5
1 −0.1317 −71.66 0 1.601
2 3.624 · 10−2 −9.599 · 10−4 0 −5.097 · 10−3

3 −2.284 · 10−6 2.074 · 10−5 0 8.112 · 10−6

4 −5.847 · 10−9 −5.661 · 10−9 0 −5.165 · 10−9

k and an inner loop with index n. The outer loop iterates
over the eigenfrequencies fempty of the empty RC com-
puted analytically using eq. (1), where the k-th element is
used to initialize the inner loop with fn. In the inner loop,
the material parameters K and ρ are determined from the
material model defined in eq. (8), evaluated for the k-th
element in fempty. Therewith, the call to openCFS is de-
noted as F{K, ρ}, which returns an eigenfrequency vec-
tor fEV. From fEV, the k-th element is stored in the ele-
ment fn+1. In addition to that, the imaginary part β cor-
responding to fn+1 is stored. The absolute deviation of
fn+1 from fn is the error e, i.e.

e = |fn+1 − fn| . (16)

If the error e is smaller than the stopping criterion ε, the
algorithm is assumed to be converged (end of inner loop),
and fn+1 is stored in the result vector fempty at k-th po-
sition. An alternative stopping criterion is present when
a maximum number of iterations NmaxIt is reached. Fi-
nally, the outer loop is restarted by selecting the k + 1-th
element of fempty.

Algorithm 1 is implemented using PyCFS, which is a
Python interface to openCFS suited for automatization of
openCFS calls [16]. For the solution of the generalized
EV problem in openCFS, the eigenvalue solver ARPACK
is used, which uses an Arnoldi-type method.

3. RESULTS

3.1 Eigenfrequencies of the RC with and without EA

Algorithm 1 is evaluated with the input parameters
NEV = 25, NmaxIt = 10, and ε = 10−6 Hz. The max-
imum number of iterations necessary for the iterative so-
lution procedure was five, hence the maximum iteration
number stopping criterion was never reached. In tab. 2,
the numerically evaluated eigenfrequencies are listed for

Algorithm 1: Iterative algorithm for the
nonlinear EV problem.

Data: eigenfreq. of empty RC: fempty

Input: NEV, NmaxIt, ε
Result: eigenfreq. of RC with EA: fnlEV

1 for k = 1, ..., NEV do
2 initialization: fn ← fempty[k];
3 n← 0;
4 while e > ε and n ≤ NmaxIt do
5 K ← K(2πfn) (eq. (8));
6 ρ← ρ(2πfn) (eq. (8));
7 fEV ← F{K, ρ} (eq. (15));
8 fn+1 ← fEV[k];
9 e← |fn+1 − fn| (eq. (16));

10 n← n+ 1;
11 end
12 fnlEV[k]← fn+1;
13 end

the configurations depicted in fig. 2 up to the 25th eigen-
frequency of the empty RC, which is approximately at
77.9Hz when computed according to eq. (1). Note, that
in tab. 2 for k = 12, the analytically computed eigenmode
with the mode order (nx, ny, nz) = (1, 2, 0) could not be
detected by the numerical scheme.

In fig. 5, the damping ratio ζ of the eigenmodes is
depicted, and it can be deduced that up to k ≤ 13, EA1
has the largest modal damping. For mode indices k > 13,
larger fluctuations in ζ can be observed. Furthermore, the
mode indices k ∈ {8, 14} are highlighted, as for these
mode indices, the field results are included in sec. 3.3. The
mode at k = 12 is omitted because the iterative scheme
did non converge to this mode.
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Table 2. Mode orders, analytically and numerically computed eigenfrequencies of the empty RC, and numeri-
cally computed eigenfrequencies of EA1, EA2, and EA3.

k
mode order analyt. eigenfreq.

empty (in Hz)
numeric eigenfreq. (in Hz)

nx ny nz empty EA1 EA2 EA3

1 1 0 0 20.36 20.36 20.28 20.31 20.32
2 0 1 0 28.34 28.34 28.34 28.30 28.32
3 0 0 1 34.65 34.65 34.66 34.60 34.63
4 1 1 0 34.89 34.89 34.84 34.81 34.84
5 1 0 1 40.18 40.18 40.16 40.10 40.14
6 2 0 0 40.71 40.71 40.60 40.62 40.64
7 0 1 1 44.76 44.76 44.88 44.65 44.74
8 1 1 1 49.17 49.17 49.23 49.01 49.11
9 2 1 0 49.61 49.61 49.49 49.43 49.49

10 2 0 1 53.46 53.46 53.37 53.30 53.36
11 0 2 0 56.68 56.68 56.76 56.60 56.68
12 1 2 0 60.23 — — — —
13 2 1 1 60.51 60.51 60.45 60.21 60.36
14 3 0 0 61.07 61.07 60.94 60.92 60.97
15 0 2 1 66.43 66.43 66.69 66.32 66.48
16 3 1 0 67.32 67.32 67.17 67.04 67.17
17 0 0 2 69.29 69.29 69.40 69.18 69.31
18 1 2 1 69.48 69.48 69.71 69.34 69.50
19 2 2 0 69.79 69.79 69.80 69.63 69.74
20 3 0 1 70.21 70.21 70.07 69.96 70.07
21 1 0 2 72.22 72.22 72.31 72.09 72.22
22 0 1 2 74.86 74.86 75.12 74.69 74.92
23 3 1 1 75.72 75.72 75.55 75.26 75.49
24 1 1 2 77.58 77.58 77.81 77.38 77.62
25 2 2 1 77.92 77.92 78.08 77.69 77.89

1 3 5 7 9 11 13 15 17 19 21 23 25

mode index k

0

0.2

0.4

0.6

1
in

%

empty
EA1

EA2
EA3

k 2 f8; 14g

Figure 5. Damping ratio ζ of numerically evaluated
eigenmodes.

3.2 Modal Assurance Criterion

To quantify how much the modes of the RC with EA
(i.e., configurations EA1, EA2, and EA3) deviate from
the modes of the empty RC, the modal assurance crite-

rion (MAC) is used. It indicates how well modes (i.e.,
eigenvectors) of two different systems are matched [17],
where one system is the empty RC, and the other system
is one configuration with EA (see fig. 2). Thereby, only
the air regions Ωair are considered for the MAC. Accord-
ing to [17], the MAC can be computed with

MAC(m,n) =

∣∣ψT
mχ

∗
n

∣∣2
(ψT

mψ
∗
m) (χT

nχ
∗
n)
· 100% , (17)

where ψm is the eigenvector corresponding to the m-th
eigenfrequency of the empty RC, and χn is the eigenvec-
tor corresponding to the n-th eigenfrequency of one con-
figuration with EA. Hence, the MAC matrices MACEA1,
MACEA2 and MACEA3 are obtained. Furthermore, the
AutoMAC matrix MACempty can be obtained by letting
χn be the eigenvectors of the empty RC.

The off-diagonal contributions of MACempty(m,n),
MACEA1(m,n), MACEA2(m,n) and MACEA3(m,n),
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i.e., where m ̸= n, only provide insignificant contribu-
tions to the MAC. Hence, only the main diagonal, i.e.
where m = n is of interest. It is depicted in fig. 6, from
which it is visible that the MAC is reduced for mode in-
dices k ≥ 14 for configurations EA1 and EA2, with the
exception of mode k = 19. The mode at k = 12 is omit-
ted because the iterative scheme did non converge to this
mode.

1 3 5 7 9 11 13 15 17 19 21 23 25

mode index k

96

98

100

M
A
C

in
%

MACEA1(k, k)

MACEA2(k, k)

MACEA3(k, k)

k ∈ {8, 14}

Figure 6. Main diagonal of MAC matri-
ces, i.e. MACEA1(k, k), MACEA2(k, k), and
MACEA3(k, k).

3.3 Modal Field Results

Figure 7 shows the numerically evaluated modal pressure
field of the 8th eigenfrequency for the empty RC and all
EA configurations, which corresponds to a mode order of
(nx, ny, nz) = (1, 1, 1). In fig. 8, the numerically evalu-
ated modal pressure field of the 14th eigenfrequency is de-
picted for the empty RC and all EA configurations, which
corresponds to a mode order of (nx, ny, nz) = (3, 0, 0).

The difference in the pressure field between empty
RC and the EA configurations is especially visible in the
EA volume highlighted in green. However, also in the air
volume, a significant damping of the pressure field can be
observed, especially in fig. 7 showing the eigenmode for
k = 14.

4. CONCLUSION

In this work, an iterative procedure for the nonlinear
eigenfrequency problem arising in FE simulations with a
porous material modeled as an equivalent fluid has been
presented. This modeling method is superior to conven-
tional simulation methods based on geometric acoustics
because it models acoustic waves both in the air and ab-
sorber domains and is used for eigenvalue computations.
The presented iterative procedure based on the fixed-point
iteration is necessary due to the frequency-dependent ma-
terial parameters of the EFM. From fig. 5, it is visible that

(a) empty (b) EA1

(c) EA2 (d) EA3

Figure 7. Field result for the numerically evaluated
eigenvectors for k = 8 of (a) empty RC and (b)–(d)
EA1, EA2, and EA3, respectively.

(a) empty (b) EA1

(c) EA2 (d) EA3

Figure 8. Field result for the numerically evaluated
eigenvectors for k = 14 of (a) empty RC and (b)–(d)
EA1, EA2, and EA3, respectively.
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the damping property of EA is unevenly distributed across
different modes. One presumption could be, that modes,
for which nx ≤ ny + nz , have larger damping values than
modes, for which the mode order inequality is not fulfilled
(except for k = 23 and EA1 configuration). However, it
is subject to further studies if this relation is also valid for
other geometric arrangements (e.g., EA along the y-axis
in the room).
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