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ABSTRACT

In environmental acoustics, sound propagates in open air
and can be mathematically modelled in terms of a semi-
infinite domain. The calculations for accurate numerical
solutions for outdoor acoustics are computationally heavy
when the chosen computation domain is large enough to
fulfil the Sommerfeld radiation condition. To lower the
computational cost, the domain must therefore be trun-
cated to not significantly impact the numerical solution
inside the domain and allow outgoing acoustic waves to
leave the domain undisturbed. Various radiation condi-
tions (sometimes considering the wind) have been devel-
oped to achieve this goal such as the Perfectly Matched
Layer method. The aim of this study is to compare the
accuracy of different non-reflecting boundaries using the
high-order nodal discontinuous Galerkin finite element
method (DG-FEM) for the case of an acoustic pulse prop-
agating in a static and moving medium in an unstructured
mesh. For each boundary treatment, the tunable param-
eters of the methods are defined to balance accuracy and
computational cost.
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1. INTRODUCTION

When modeling outdoor sound propagation, the acoustic
waves travel in a semi-infinite domain. Therefore, the
computational domain in numerical simulations must be
truncated at an artificial limit that acts as a non-reflective
boundary for the outgoing acoustic waves. The definition
of this boundary should allow those waves to leave the
domain undisturbed and not significantly impact the nu-
merical solution inside the domain of interest.
Two strategies can be implemented to address this chal-
lenge: non-reflecting boundary conditions (NRBC) and
layers (NRBL). NRBC have the advantage of being com-
putationally efficient but have poor accuracy. The most
widely used NRBC are the ones from Bayliss-Turkel [1]
and Engquist-Majda [2]. Higher-order NRBC, pioneered
by Collino [3], are more competitive in terms of accu-
racy but they are challenging to implement, and add non-
negligible extra computation costs. The NRBL strategy
consists of adding extra grid points at the edge of the grid,
creating a layer where the waves are artificially decayed
quicker than inside the original domain. In this layer, the
waves can be dampened [4], the grid can be stretched [5],
or the waves can be accelerated towards the outer edge to
slow down the reflections [6]. However, those techniques
are not flexible enough to accommodate more complex
study cases (moving medium, wide range of frequencies,
curvilinear grid, etc.).
The Perfectly Matched Layer (PML) technique was in-
troduced in the mid-90s for the Maxwell equations [7].
It has been a popular sub-field of research since it solves
most of the flexibility issues of previous NRBL techniques
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and is more accurate than NRBC. The stability and well-
posedness of the PML have been proved [8–10], and the
technique is used in various problems, including outdoor
acoustics. Hu, in particular, focused on applying PML
to the time-domain wave equation in static and moving
mediums [11–14].
PML is a complex change of variable in the frequency do-
main, which dampens the perturbation modes inside the
layer and limits the generation of spurious reflections in-
side the domain of interest. The parameters that define
the PML are the thickness of the layer, the refinement of
its mesh, and the absorption function. To improve accu-
racy, the first two parameters presuppose an increase in
computation, so the last parameter has been more thor-
oughly studied to evaluate an optimal definition of the ab-
sorption function acting on the waves entering the PML
domain [15–17]. The thickness of the PML has been less
studied because it is case-dependent.
In this paper, we will discuss non-reflective boundaries
in the time-domain wave equation for outdoor acoustics
using the discontinuous Galerkin finite element method
(DG-FEM) [18]. The accuracy in the discrete domain
for different non-reflective boundaries are compared. We
then focus on the PML technique in a static and a moving
medium and characterize the different types of reflection
of the acoustic waves polluting the domain of interest.

2. METHOD

2.1 Governing equations and numerical scheme

The acoustic wave equations describe the propagation of
sound in the atmosphere in the time domain as follows:
for (x, y) ∈ R2 and t ≤ 0:

∂p

∂t
+ ρ0c

2∇.v + v0 · ∇p = ρ0c
2Q (1)

∂v

∂t
+

∇p

ρ0
+ (v0 · ∇)v + (v · ∇)v0 =

F

ρ0
(2)

with p(x, y, t) the acoustic pressure in Pa, v(x, y, t) =
(vx, vy) the particle velocity vector in m/s, at time t
and location (x, y) for the case of two-dimensional sound
propagation. v0 = (vx,0, vy,0) is the mean wind in m/s.
The density of air ρ0 = 1.2 kg/m3 is considered constant
at and the speed of sound is set to c = 343 m/s. Q and F
correspond to potential mass sources and external forces
and are considered null in this study. Those set of equa-
tions can be condensed into the following matrix form:

∂u

∂t
+A

∂u

∂x
+B

∂u

∂y
+Cu = 0 (3)

The equations are solved using the DG-FEM [18]. For
the numerical flux that allows communication between el-
ements, an upwind flux is constructed derived from the
eigenstructure of the model equations [19].

The approximated solution is interpolated at inter-
polation nodes chosen as the Legendre-Gauss-Lobatto
quadrature points. It is advanced in time using a fourth
order explicit Runge-Kutta scheme with a time-step cho-
sen small enough to ensure a discretely stable scheme
and that the time-step error can be neglected (Courant-
Friedrichs–Lewy number equal to 0.75).

At initial time, the sound pressure spatial distribution
is a Gaussian pulse (Eqn. (4)) of width α = 0.1 m, centered
around the point source S(xs = 0, ys = 0) as in Fig. 1:

p(x, y, 0) = exp

(
−ln(2)

(x− xs)
2 + (y − ys)

2

α2

)
(4)

It translates to a peak frequency of around 640 Hz and
correspond to roughly 6.5 points per wavelength at this
peak frequency. The particle velocities in the x- and
y-directions are null: v(x, y, 0) = 0.

The domain of interest Ω is a 5 m-by-5 m mesh cen-
tered in (0, 0) and containing K = 582 triangular ele-
ments as in Fig. 1. For the case of NRBL, an extra layer
ΩPML at the periphery of Ω is added and has a width of
δ. Three widths δ are considered: 1m, 2.5m and 7.5m.

Figure 1. Notation of the mesh. In blue is repre-
sented the Γ line along which the energy is evaluated
and in orange is represented the Γ line along which
the energy is evaluated.
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2.2 Non-reflecting Boundary

2.2.1 Non-reflecting Boundary Conditions

Three types of non-reflective boundary conditions are
tested:

• Impedance-based boundary condition where the
outer boundary of the mesh has an impedance of
Z = ρ0c.

• Impedance-based with angular correction bound-
ary condition where the impedance has been cor-
rected to account for the angle of incidence of the
wave hitting the outer boundary of the mesh

• Zero-th order absorbing boundary condition where
the external characteristics are zero when calculat-
ing the flux over the outer edge of the triangular
elements of the mesh bordering Ω.

2.2.2 Non-reflecting Boundary Layers

Two types of non-reflective boundary layers methods are
tested and implemented on ΩPML:

• Grid stretching where the x- and y-derivatives of
the equations are stretched linearly.

• Simple dampening where the term (σx + σy)u
is added to the left side of Eqn. (3)) with σx =
cx−xPML

δ and σy = cy−yPML

δ only in the extra
layer (see Fig. 1 for the notation).

A reflective boundary condition is imposed at the end of
the layer.

2.2.3 Perfectly matched layer (PML)

The PML method corresponds to a complex coordinate
stretching in the frequency domain. This transformation
is implemented inside ΩPML in order to absorb the out-
going acoustic energy leaving the domain and without
creating spurious reflections inside Ω (i.e. the perfectly
matched layer).
With the following change of variable, the PML can be
fully described in the static case:

x →
(
1 +

iσx

ω

)
x and y →

(
1 +

iσy

ω

)
y (5)

where σx and σy are the absorption functions and ω is the
angular frequency. After introducing the auxiliary vari-
able q, the following PML equations are solved in ΩPML

for the case of a static domain [12]:
∂u

∂t
+A

∂u

∂x
+B

∂u

∂y
+ σyA

∂q

∂x
+ σxB

∂q

∂y
+

(σx + σy)u+ σxσyq = 0

(6)

∂q

∂t
= u (7)

In the case of a uniformly moving medium, the following
PML equations are solved in ΩPML [12]:

∂u

∂t
+A

∂u

∂x
+B

∂u

∂y
+ σyA

∂q

∂x
+ σxB

∂q

∂y
+

(σx + σy)u+ σxσyq +
σxMx

1−M2
x

A(u+ σyq) = 0

(8)

∂q

∂t
= u (9)

where Mx =
vx,0

c is the subsonic Mach number in
medium with a mean flow of v⃗x = vx,0e⃗x. This study
tests only the cases where Mach numbers Mx > 0
and My = 0, which correspond to the situation where
wind blowing uniformly and horizontally across the full
domain.

At the termination of the PML, a perfectly reflective
boundary condition is imposed to isolate the absorbing
performance of the PML.

Different profiles of absorption σx(x) and σy(y) are
tested. They are defined as a polynomial function of space
in ΩPML and null in Ω:

σx = σ0

(
x− xPML

δ

)n

and σy = σ0

(
y − yPML

δ

)n

(10)
where n = {0, 1, 2, 3} which corresponds to a constant,
linear, quadratic, and cubic absorption profile, respec-
tively. σ0 ≥ 0 is the absorption factor in s−1 and is a
multiple M of the speed of sound c: σ0 = M × c with
M ≥ 0.

In theory, the PML absorbs the exact wave equation
if the absorption factor is high enough. “Round-trip”
reflections can appear if the PML is not absorbent enough
(small σ0). This type of reflections is the original wave
bouncing off the perfectly reflective boundary at the end
of the PML and carrying energy back into Ω.
However, the absorption factor σ0 cannot take large
values either because the discretization with DG-FEM
(or other numerical schemes) inevitably introduces an
approximation in the solution which creates spurious re-
flections. This type of reflections can be called ”transient”
reflections and can be curtailed by slowly varying the
PML zone absorption profile and/or widening the PML.
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Figure 2. Absorption profile σx(x) in the x > 0 part
of the domain for σ0 = 1 × c and a PML width of δ
= 2.5m.

Therefore, a compromise needs to be reached be-
tween the different PML parameters:

• the absorption factor σ0 in Eqn. (10),
• the absorption function profile by choosing n in

Eqn. (10),
• the discretization error of the scheme by choosing
N and K in the DG-FEM scheme,

• the width of the PML δ,
• the computational time and storage.

To quantify the error produce by those choices, the relative
energy reflected and the time average of the L∞-norm on
the pressure are evaluated.

2.3 Error definitions

2.3.1 Relative energy

For the round-trip reflection, we are interested in assessing
the amount of energy coming back into Ω. The energy of
the acoustic wave along a line Γ is defined as:

EΓ(σ0, t) =

[∫
Γ

1

2

1

ρ0c2
p2 − 1

2
ρ0v

2 dγ

]1/2
(11)

where Γ is chosen as the path of normal incidence to the
PML in Fig. 1.

The relative energy along the same line Γ and time t is
defined as the ratio between the case where the absorption

is positive: σ0 > 0, and the case where no PML treatment
has been applied: σ0 = 0.

ξΓ(σ0, t) =
EΓ(σ0, t)

EΓ(0, t)
(12)

For the static cases, the relative energy is calculated at
time tR = xPML+2δ

c and since the problem is symmet-
ric only the positive line is considered. At tR, EΓ(σ0, tR)
corresponds to the energy of the wave as it leaves the PML
after travelling back and forth the width of the PML (2δ).
For the moving medium cases, the relative energy is cal-
culated at time tR = xPML+2δ

c(1+Mx)
for the downwind case

(positive x).
ξΓ(σ0, tR) is the relative energy reflected. When
ξΓ(σ0, tR) tends to 1, the PML is not absorbing the wave
enough and the full domain (Ω ∪ΩPML) acts like a close
domain. Whereas, when ξΓ(σ0, tR) tends to zero, the
PML performs well enough so that negligible energy from
round-trip reflections is coming back to pollute Ω.

2.3.2 L∞-norm on the pressure

A highly non-reflective boundary is a boundary that
lets negligible spurious reflections coming back into the
domain of interest. It can be evaluated by comparing the
pressure in a domain including a non-reflective boundary
treatment (NRBC or NRBL) with a reference pressure.
The reference pressure pref is obtained by simulating
the same setup over a very large mesh and without
non-reflecting boundary treatment.

The time average of L∞-norm on the pressure is
defined as:

⟨Lp
∞(t)⟩ = 1

T

∫ T

0

max
(x,y)∈Γ

(|p− pref |) dt (13)

where Γ is the line along which the norm is calculated. In
the study, the L∞-norm is evaluated at x = 2 m inside Ω
in order to capture the pressure difference with the refer-
ence case close to the PML and it correspond to the blue
line in Fig. 1. T is the simulation time. It is chosen long
enough for the pressure to decay under 20 µPa (perceptual
threshold).

3. RESULTS

3.1 Static medium

Figure 3 and Figure 4 compare the accuracy of the NRBC
and NRBL (including the PML case) considered over the
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polynomial order N of the DG-FEM scheme using the
time average of the L∞-norm on the pressure. The dashed
line corresponds to the perceptual level (20 µPa).

Figure 3. L∞-norm on the pressure along the blue
line for three NRBC.

Figure 4. L∞-norm on the pressure along the blue
line for two NRBL and PML.

Figure 5 compares the magnitude of the round-trip re-
flections of the PML over a range of absorption factor σ0

using the relative energy reflected with N = 10. Four ab-
sorption profiles are considered n = {0, 1, 2, 3} and they
all reach the same maximum absorption of σ0 at the end
of the PML (xPML + δ).

Figure 5. Relative energy reflected along the orange
line for four different absorption profiles with N =
10.

Figure 6 compares the magnitude of the transient re-
flections from the PML for different widths of PML (1 m,
2.5 m and 7.5 m) using the time average of the L∞-norm
on the pressure with N = 10. The case of linear absorp-
tion (n = 1) is chosen because it is the most uniformly
varying profile.

Figure 6. L∞-norm on the pressure over the ab-
sorption factor along the blue line for three different
widths of PML.
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3.2 Moving medium

For this section, a linear absorption profile is again cho-
sen. The PML has a width of δ = 2.5 m and the relative
energies reflected are evaluated at their respective time tR
for different Mach number Mx ≥ 0. The relative energy
reflected is evaluated on the same line as for the static case
(equivalent to Mx = 0) which corresponds to the down-
wind side in Fig. 7.

Figure 7. Relative energy reflected along the orange
line for the case of moving medium and the static
case.

4. DISCUSSION

Figure 3 and Figure 4 show that PML has better accuracy
compared to the considered NRBC and NRBL, especially
at high order. The existing literature corroborates these
findings which justifies the extensive research on the
PML method in the last decades over other types of
non-reflecting boundaries.

As expected, the round-trip reflections magnitude
decreases fast as the absorption factor starts to increase
from zero to higher absorption factors σ0 in Fig. 5: the
relative energy reflected ξΓ(σ0, tR) start from 1 when no
PML is imposed (M = 0 m

−1) and decreases rapidly to
around 2× 10

−2 for all absorption profiles. For the linear,
quadratic and cubic cases (n ∈ {1, 2, 3}), ξΓ(σ0, tR)
stops decreasing as rapidly after different absorption
factors are reached (M equal to 2, 3 and 3.5, respectively)
and ultimately stabilises around 1 × 10

−2. This stems

from the nodal DG-FEM discretization scheme: for a
fixed PML width, the jump of absorption gets higher
and higher as the absorption factor σ0 increases which
introduced a numerical error. However, for the constant
case (n = 0), the relative energy reflected even increases
once M reaches 1 m−1 and grow up to 6 × 10

−2 in the
absorption range considered. The discontinuity in the
absorption profile of the constant case is experienced
by the waves at the entrance of the PML so at high
absorption factor σ0 or high M , the PML acts like a wall
and reflects part of the wave back to Ω.

To quantify the transient reflections coming back
to Ω, Fig. 6 shows the time average of the L∞-norm
on the pressure over the absorption factor on a line at
x = 2 m. Transient reflections are minimal when the
absorption factor is small since the jumps of absorption
in the PML in the discrete scheme are also small. When
the absorption factor is large, more energy is reflected
inside Ω. The PML with a width of 1 m and 2.5 m
present a minimum time average L∞-norm of 3.7× 10

−4

at M = 2.5 m
−1 and 5.3 × 10

−4 at M = 5 m
−1,

respectively. The largest PML where δ = 7.5 m is too
wide to get noticeable reflection back to Ω. However, a
wide PML implies longer computational time. Therefore,
a compromise needs to be made where, for a fixed
absorption profile, the PML width is adjusted according
to the error tolerated.
In this study, the boundary conditions at the termination
of the PML are perfectly reflective so that only the ab-
sorption through the PML is considered. Better accuracy
should be expected if the end of the PML is a NRBC.

In the case of moving medium in Fig. 7, the down-
wind wave reaches the PML earlier than the wave in a
static medium. The relative energies reflected at different
Mach numbers for low M are comparable in the Mach
range considered. However, the relative energy reflected
ξΓ(σ0, tR) starts decreasing less quickly at a smaller M for
fast moving medium: M = 1.5 m−1 for a Mach number
of 0.25 and M = 2 m−1 for a Mach number of 0.1 and 0.
The error then stabilises to around 1 × 10

−2, 1.5 × 10
−2

and 3.5× 10
−2 for a Mach number of 0, 0.1 and 0.25, re-

spectively. Indeed, the absorption factor being related to
the speed of sound c, the effect of a jump in absorption is
felt earlier by the downwind wave.
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5. CONCLUSION

The PML method has been a popular method in the last
decades to deal with non-reflecting boundary because it
is easy to implement, relatively accurate and flexible to
multiple situations (different frequencies, angle of inci-
dence, moving medium). In the case of outdoor acoustics,
this study showed that PML is still an interesting choice
when the problem is discretized using the nodal DG-FEM
method. This method was used to implemented different
types of non-reflecting boundaries including PML. Never-
theless, the PML parameters need to be determined care-
fully to be effective. The absorption needs to be strong
enough to fulfill its purpose but also weak and gradual
enough to not generate spurious reflections created from
the discretization. Through the evaluation of the reflected
energy and the L∞-norm on the pressure, it was con-
cluded that for all absorption functions, the performance
of the PML improves when the absorption factor grows,
but only until a certain threshold. After which, the perfor-
mance plateaus out or, worst, it deteriorates.
More investigation needs to be done to generalize those
findings for any PML width in static medium as well as in
moving medium.
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