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ABSTRACT

Nowadays electric cars are every day more and more
present on the market and a crucial aspect from the cus-
tomer’s point of view is the acoustic comfort of the cabin.
For this reason, it is of paramount importance to be able to
predict how the excitation coming from the electric engine
is transmitted through the various components of the vehi-
cle. This research focuses on how Transfer Path Analysis
through the Dynamic Substructuring technique applied to
a car assembly can evaluate the frequency dependant insu-
lation behavior of the Structure-borne noise between the
source and the final receiver. The final goal is to under-
stand the role in terms of dynamic stiffness of the various
components in reducing the transmissibility at particular
frequency ranges.

Keywords: Transmissibility, Insulation, Dynamic Stiff-
ness

1. INTRODUCTION

This paper puts its focus on the evaluation of the insu-
lation of a multi-DOFs system composed by masses mi,
stiffnesses ki and dampings ci. With this work we want
to understand which structural parameters are responsible
for characteristical form of the insulation curve over fre-
quency and ones only playing a role in the local dynamics
of the system and therefore not affecting the curve char-
acteristics. In most of the industrial contexts we end up
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with very complex systems all connected to each other
which are hard to understand because of their complex-
ity. An example could be the one shown in Fig. 1 where
we have the simplified representation of an electric drive-
unit connected to a (rear) axle carrier connected to the
main (trimmed) body of the car. One can measure or
simulate the FRFs of the systems’s substructures and then
combine them using Dynamic Substructuring (see for in-
stance [1–4]). The goal of those complex studies is to
asses the final noise level coming from the contribution of
each sub-component of the assembly. However it’s rather
difficult to establish how a certain element is contributing
to the signal reduction through the system.

Figure 1: Simplified representation of a car assem-
bly: engine, rear axle carrier, car body

The idea of this study is to represent each of those
complex subsystems with very simple elements and start
assessing general rules about a plausible behavior of the
insulation between two points. Some properties and defi-
nitions about transmissibility can be found in [5–7]. With
a very simplified example of a multi-DOFs system it is in-
deed easier to understand the system’s behaviour and de-
rive some rules of thumb about the most relevant parame-
ters that would decrease or increase the transmissibility.
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2. GENERAL DEFINITIONS

For a single DOF system characterised by a mass m and
connected to the ground with a stiffness k, a damping c
and excited with a force f causing a displacement x we
can define the following quantities:

• compliance as the ratio between displacement and
force H(jω) = X/F

• mobility as the ratio between velocity and force
V (jω) = Ẋ/F

• accelerance as the ratio between acceleration and
force Y (jω) = Ẍ/F

• dynamic stiffness as the inverse of the compliance
and ratio between force and displacement Z(jω) =
F/X

where j is the imaginary complex number and ω is the
angular frequency.

Compared to the other quantities, like shown in Fig. 2,
it is particularly convenient to plot the dynamic stiffness
curves in a double-logarithmic graph. Here we can im-
mediately highlight the system’s stiffnesses as horizontal
lines, the masses as oblique lines, which we refer as mass-
lines, and the systems resonances and anti-resonances as
vertical lines in correspondence of the crossing of the pre-
vious two. As a reference, the reader should keep in mind
for later discussion that mass-lines grow with the power
of 2 of the angular frequency ω.
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Figure 2: Dynamic stiffness of a 1-DOF system with
phase

x1 x2

m1 m2

k

f (t)

Figure 3: representation of a two mass system in
free-free boundary conditions

2.1 Insulation definition

Let’s now consider a 2-DOF system like in Fig. 3. Here
the system’s equation can be written as:{

X1

X2

}
=

[
H11 H12

H21 H22

]{
F1

F2

}
(1)

Where Xi is the forced response of the ith DOF, Fi is the
excitation acting on the ith DOF and His is the frequency
response function between the sth excited DOF and the
ith DOF where we measure the response.

Here, we can define the insulation between the DOF
1 and the DOF 2 as ratio of responses like:

GI,1−→2(jω) =
X1

X2
=

H11(jω)F1 +H12(jω)F2

H21(jω)F1 +H22(jω)F2
(2)

In case of a single excitation (F2 = 0) this expression
reduces to the ratio of two FRFs and all the other terms
simplify:

GI,1−→2(jω) =
X1

X2
=

H11(jω)

H21(jω)
(3)

It is indeed possible to express the insulation between two
poins as the ration of the forced responses or as the ratio
of FRFs.

2.2 Forced response

To evaluate the forced response of a n-DOF system we
need to solve:

Mü+Cu̇+Ku = f(t) (4)

where M , C and K are respectively the n × n mass,
damping and stiffness matrices, while u and f(t) are the
n× 1 unknown displacement vector and the force excita-
tion vector.
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Following the state-space assumption we can write

y =

{
u
u̇

}
and ẏ =

{
u̇
ü

}
and obtain a 2n equation system

in 2n unknowns which would look like[
C M
M 0

]
ẏ +

[
K 0
0 M

]
y =

{
f(t)
0

}
(5)

here we can write Eqn. (5) in a more compact form and
obtain Eqn. (6):

Aẏ +By = f (6)

which we can numerically solve to obtain the unknown
2n× 1 vector of displacements and therefore u.

2.3 FRF definition

The frequency response function (FRF) is defined as the
ratio between response and excitation as function of ex-
citation frequency. For a n-DOF system, we can define
the FRF between the sth excited DOF and the ith DOF
where the response is measured, as a superposition of
eigenmodes like in Eqn. (7)

His(ω) =

n∑
r=1

(
ϕirϕsr

jω − λr
+

ϕ∗
irϕ

∗
sr

jω − λ∗
r

) (7)

Where ϕir is the ith component of the rth eigenvec-
tor, λr is the rth eigenvalue and the symbol ∗ represents
the complex conjugate number of a certain value.

3. CURVE TREND

In this chapter, after defining the insulation, we want to
have a closer look at the trend of the terms inside Eqn. (2)
and at their frequency dependency.

3.1 Insulation evaluation from forced responses ratio

The first way to determine the insulation from one DOF
to the other is by ratio of forced responses. This operation
is particularly useful and straightforward:

• during measurements, where we simply divide the
signal acquired by two (or more) accelerometers
positioned on the DOFs we want to measure;

• when we have more than one force excitation that
would lead to an expression similar to Eqn. (2) but
perhaps even more complicated.
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Figure 4: Insulation between DOF 1 and 2

After evaluating the time-domain forced responses of a
system (like in Eqn. (6)), we can perform the Fourier
Transform to obtain the forced responses in frequency do-
main. Then, according with Eqn. (3), we get to the in-
sulation between two DOFs from the ratio of two forced
responses in frequency domain. Fig. 4 shows an example
of such operation applied to the 2-DOF system of Fig. 3.

Here one can spot immediately that, without an appro-
priate window on the time-domain signals of the response,
the results are completely unreadable (see the blue curves
inside Fig. 4). While, after windowing the response sig-
nals, we manage to perform a better FFT having made
our signal periodic, and the resulting insulation (orange
curve) is now clear (see also a comparison with the later
discussed Fig. 7).

3.2 Insulation evaluation from FRF ratio

Another way to determine the insulation, in case the sys-
tem’s forced excitation is unique, is from the ratio of
FRFs.

3.2.1 Driving dynamic stiffness behavior

Let’s now have a closer look at the numerator of Eqn. (3)
which is the driving point receptance. Like explained be-
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fore, we can invert this quantity and represent it in double
logarithmic graph to highlight the relations with the mass
and stiffness terms. Fig. 5 shows the trend of such dy-
namic stiffness for a system like Fig. 3. In this example
we chose m1 = 2kg, m2 = 10kg, k12 = 10N/mm.
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Figure 5: Driving point dynamic stiffness of a 2-
DOF system with phase

What we can observe, is that the driving dynamic
stiffness of the body 1 is at lower frequencies follow-
ing the mass line of the heavier body m2 until a certain
anti-resonance. Starting from that frequency, following
the stiffness level of k12, the decoupling begins, which
means the two bodies are moving independently one with
respect to the the other. Here, the dynamic stiffness de-
creases and finds its minimum in correspondence to the
resonance peak and then follows its own mass-line m1.
The driving dynamic stiffness of body 2 would just follow
for the entire frequency range the mass-line m2 with the
only disturbance of a resonance and anti-resonance peak.
It is interesting to note that the decoupling begins with the
anti-resonance and it completes with the resonance, after
that frequency the two bodies can be considered dynami-
cally decoupled.

3.2.2 Transfer dynamic stiffness behavior

For the transfer dynamic stiffness term the situation is a
little bit different (see Fig. 6): here the dynamic stiffness
Z21 follows the mass line m2 and only detaches from it in
correspondence of the natural frequency. After this local
minimum, being an FRF a superposition of eigenmodes,
it starts increasing with the power of 4 of the angular fre-

quency ω and therefore the curve trend is steeper than one
of the mass-line m2
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Figure 6: Transfer dynamic stiffness of a 2-DOF sys-
tem with phase

3.2.3 Insulation curve

Following the definition in Eqn. (3) it is possible to obtain
the insulation between two DOF as a ratio of FRFs, more
in particular as a ratio of dynamic stiffnesses. Such result
is proposed in Fig. 7, here it is interesting to note that

• in the low frequency range there’s no insulation
since the two above mentioned curves are both fol-
lowing the mass line of m2;

• the insulation decreases in correspondence of the
first anti-resonance and after that frequency starts
increasing, which means that in the high frequency
range the body 2 is decoupled from the body 1 and
its displacement is lower than the displacement of
the body 1;

• the resonance doesn’t play any role in the determi-
nation of the insulation curve.

3.3 Application: insulation of a 3-DOF system

Here an application representing the system in Fig. 1 us-
ing 3 point masses, 2 springs and 2 dampers is briefly
shown. Fig. 8 is showing the insulation curve between the
engine and the rear axle carrier of this 3-mass system.

The first two graphs show respectively the dynamic
stiffnesses Z21 and Z11, here like before it is interesting to
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Figure 7: Insulation between DOF 1 and 2 of a 2-
DOF system

note how the crossing between certain static stiffness and
mass lines determines the position of certain resonances or
anti-resonances. Therefore, one can immediately under-
stand which system’s parameter should be changed when
wanting to shift the anti-resonances and obtain a particular
level of insulation in the frequency range of interest.

4. CONCLUSIONS AND OUTLOOKS

This paper presented a quick overview over the concept
of transmissibility and insulation. Firstly the concept of
insulation and transmissibility was introduced, then two
different methods for analysing such concept were pre-
sented, either from a ratio of forced responses or from a
ratio of FRFs. The first approach emulates an experiment:
starting from the dynamic properties of a system, we intro-
duced a force excitation and then we numerically solved
the system to obtain the forced responses in time domain
of all the DOFs. Being such procedure more straightfor-
ward and easier to implement inside an experimental con-
text (we only need to do the ratio between 2 acquired sig-
nals) there are few drawbacks like the need of a proper
windowing on the time-domain signals.

Being the insulation a property of the system and not
of the excitation, the second approach obtains the same
results from a ratio of FRFs. Knowing the mass, stiffness
and damping properties of a system allows us to solve the
homogeneous equation of Eqn. (4) and write the systems’s
FRFs as a superposition of eigenmodes. The main advan-
tage is that plotting such FRFs as dynamic stiffnesses in
a double logarithmic scale gives an immediate feeling of
which parameters inside our multi-DOF system play a rel-
evant role on the determination of an insulation curve.

It is in fact the trend of the dynamic stiffness curves
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Figure 8: Insulation between DOF 1 and 2 of a 3-
DOF system representing a car assembly

that really determines the level and the peaks of an in-
sulation curve. Here the reader can then derive himself
some general rules of thumb that would help him to bet-
ter understand dynamic stiffness curves of complex sys-
tems. Also one can get an immediate feeling of which
paramenters or components are worth our engineering ef-
fort when we want to reduce the transmissibility in a cer-
tain frequency range.
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