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ABSTRACT 

Despite the advantage of being quieter than traditional 
internal combustion engine vehicles, electric vehicles are 
often distinguished by high-frequency tonal components, 
which can be perceived as unpleasant to the occupants. To 
ensure optimal acoustic comfort in electric vehicles, it is 
important to analyze the NVH behavior of e-powertrains 
during the early stages of the design process which poses 
inherent uncertainties, such as varying operating conditions, 
partial knowledge of design parameters, dispersion in 
measurement data, etc. To effectively address these 
uncertainties, it is necessary to use fast and comprehensive 
stochastic models during the design phase.  
In this work, a deterministic framework is first presented to 
estimate the e-powertrain’s interior whining noises 
combining both airborne & structure-borne contribution. 
Subsequently, under probabilistic framework, the 
uncertainties are introduced in the deterministic models 
considering random sampling of operating conditions, and 
the chosen geometrical design parameters for the e-machine 
under assessment. A multivariate Bayesian metamodel helps 
to incorporate prior knowledge on the uncertain parameters 
and generate the posterior distribution of harmonic forces. 
The uncertainties in sound pressure level are propagated 
through weakly-coupled multi-physical domains estimated 
using semi-analytical approaches and combined with 
measured vehicle transfer functions. Sensitivity analysis 
using the developed metamodel provides an efficient way to 
reinstate prior beliefs about the unknown parameters. 
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1. INTRODUCTION 

Noise, vibration and harshness (NVH) is one of the key 
criteria that significantly affects customer’s perception of 
quality and an overall image of the vehicle. Due to the 
absence of ICE, BEVs are much quieter but have a different 
acoustic signature. The interior noise contribution has high-
frequency tonal components (also known as whining noise) 
that are usually perceived as rather annoying and unpleasant 
to the occupants [1]. The major sources of interior noise in 
EVs can still be broadly classified under three categories 
namely, aerodynamic noise, tire-pavement interaction noise, 
and e-powertrain noise. The first two contributions make up 
the background (or masking) noise and the main source of 
whining (tonal) comes from the electrified powertrains. The 
whining noise along with the background masking can be 
combined to produce a key performance indicator, for 
instance, prominence ratio. A generic flowchart is shown in 
Figure 1, considering three major noise sources discussed 
above dependent globally on the operating conditions or the 
client-driving profiles. 

There has been a considerable level of research done to 
estimate e-powertrain’s acoustic performance (ref  [2] and 
[3]). However, most of the studies in the past have 
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approached the problem considering either a deterministic 
setting for the operating conditions and design architectures 
or focusing only on the local acoustic performance of e-
motors without considering the different transfer paths 
leading to the interior cabin noise. As shown in [4], Bayesian 
surrogates (or metamodels) can be developed from masking 
noise measurement data (dashed blue box in Figure 1) 
utilizing the prior-domain knowledge resulting in the 
uncertainty estimates of the resulting interior sound pressure 
level (SPL). These probabilistic metamodels are easy-to-
evaluate functional mappings where the desired response is 
a distribution of probable outputs instead of a single point-
estimate. The focus of this article is to build probabilistic 
surrogates for the electromagnetic whine shown in the 
dashed red box in Figure 1 and will be detailed in the next 
subsection. 
 

 
Figure 1. Flow chart of the global noise 
generation mechanism in BEVs 

Scope: In this study, interior-PMSM (IPMSM) is used in 
which the permanent magnets are embedded in the rotor 
core. The mechanical (for e.g., gear whine) and aerodynamic 
noises are not considered for the sake of simplicity, but the 
same methodological framework applies. In addition, since 
the structure-borne contribution is more challenging than 
airborne, it will be the focus of this study. Besides, global 
surrogates are modeled within Bayesian framework to 
account for the uncertainty in whining noise prediction for 
EVs during early-stage NVH design. Moreover, the sources 
of uncertainties considered in this work are the uncertainties 
arising from variable operating conditions and the partial-
knowledge on e-machine architecture and control parameters 
during early-stage design. 
 

2. PROBLEM DESCRIPTION 

Focusing only on the dashed red box in Figure 1, the whining 
noise assessment due to electromagnetic interaction within 
IPMSMs involves an interplay between different weakly-
coupled physical mechanisms as shown in Figure 2. For an 
efficient propagation of uncertainties, two stochastic 
metamodels are developed: one for electromagnetic forces 
under ‘e-motor stage’, and second for powertrain suspension 
under ‘vehicle stage’. 

The real-life client driving profiles are represented as pairs of 
 with  being the motor speed in [RPM] and  being 

the wheel torque in [Nm].  is a set containing 
 samples of such operating conditions (OC) sampled 

randomly from the joint-pdf available a-priori. The set of 
geometrical parameters are represented as 

, where  is the number of design parameters 
considered and  is the set of control 
parameters in pairs of , where  is the root-mean-
square amplitude of the current and  is its phase angle in 
electrical degree. 

Under deterministic setting i.e., for a particular input 
parameter set (with ), the 2D EM domain is solved 
considering 1/8th sector of the full-model (shown in Figure 3) 
using the open-source tool FEMM coupled with Pyleecan 
[5]. The Maxwell pressure, hereafter referred to as the airgap 
surface force (AGSF) in [N/m2] [6], is computed along the 
middle of the airgap in both radial and tangential directions. 
Let be the spatial order of the force with respect to the tooth 
angle in the stator frame  which determines the periodic 
shape of the force distribution, and  be the electrical order 
with respect to the angular frequency  with 
Ω , where  is the number of pole-pairs in the nominal 
design. In this article, a progressive wave of spatial order 

and frequency  is denoted by a pair ( ). The 
mechanical frequency is given by,  [Hz] and the 
mechanical orders will be denoted by, . For 
instance, Figure 4 shows the radial component of the AGSF 
at  RPM along dominant spatial and mechanical 
orders. These excitations are usually mapped on to the 
structural domain using commercially available FE codes 
(see [2] and [7]). However, in this work, a semi-analytical 
approach is investigated and therefore, the dynamic response 
of the IPMSM to the EM excitation is computed analytically 
by considering a thin cylindrical shell representative of the 
simplified stator-system. Then, the natural frequencies of the 
stator system can be approximately given by [8]: 
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where,  denote the 
circumferential and axial nodes of the simplified cylindrical 
system, respectively and  represent the calculated 
stiffness [N/m] and mass [kg] of each subsystem, 
respectively. 

 
Figure 2: Overview of the multi-physical 
mechanism involved in the generation of 
whining noise in BEVs (EM: electromagnetic, 
NTF: noise transfer function, VTF: vibration 
transfer function) 

The root-mean-squared (RMS) vibration displacement on 
the motor surface is estimated through finite number of 
spatial modes as in modal expansion. The axial modal 
function and the corresponding participating factors are 
determined as per [9] and [10]. For airborne contribution, the 
equation for radiated power is readily available, refer [8]. In 
structure-borne path, the RMS vibration displacement from 
the motor surface exerts force on the vehicle body through 
powertrain mounting systems. This input force on the vehicle 
body is identified using a Stellantis internally developed 
MATLAB tool based on lumped parameters that acts as a 
transfer function when provided with unit displacement at 
the outer surface of the motor. The true RMS vibration can 
then be coupled with this transfer function to get the 
recomposed body-input force. To get the interior cabin SPL 
due to structure-borne mechanism, the recomposed body-
input force is coupled with the available measured VTF. 
 
Under stochastic setting, the desired output is the pdf of 
the SPL inside the cabin due to uncertain OCs, uncertain 
design and control parameters. 

In this work, Bayesian hierarchical models are developed 
that encode the probabilistic dependencies between the 
random variables. Each unknown parameter in the model is 
considered as a random variable that follows a prior-pdf 
characterized by its own hyper-parameters. These hyper-
parameters incorporate the objective prior-knowledge 
available through domain expertise. Based on Bayes’ 
theorem, the posterior distribution of the unknown 
parameters is approximated using Monte Carlo methods 
[11]. 

 
Figure 3: Nominal IPMSM design considered 
as an example use-case 

 
Figure 4: Radial AGSF component at 495 
RPM 

Let  be the training input parameters and the 
observed output responses, respectively. Then, the full-
posterior pdf of the unknown random parameters  is 
given by: 

 

where,  is the likelihood function 
dependent on the parameters of the model,  is the 
prior pdf on the unknown random parameters and  is 
the model specification. 

IPMSM
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The process of Bayesian predictive metamodeling can 
then be divided into two stages where, in the first stage 
[12], the unknown parameters of the model are trained 
based on the observed/simulated data, and in the second 
stage on the basis of new input data , the samples are 
drawn from the posterior predictive distribution given by, 
 

 

which gives the predictive distribution on the new input 
set given the observed training data. 

3. PROBABILISTIC METAMODEL FOR AGSF 
( ) 

3.1 Data generation 
For the training stage, let  be the 
training dataset, such that , and 

, where  is the total number of 
frequency bins corresponding to a pair . The 
operating conditions are sampled using the inverse-transform 
sampling from the joint-pdf of  and the joint kernel 
density estimate (kde) of the samples can be seen in Figure 
5. Other input parameters (design and control) are supposed 
to follow inverse gamma distributions whose support is 

 

 
Figure 5: Joint distribution of the sampled 
OCs ( ). The two shaded curves at the 
edges represent the marginal distribution of 
the respective variable 

It is to note that under steady-state conditions, the AGSF 
does not depend on  and therefore, variable operating 
speed only influences the spatial frequencies at which 
AGSF acts.  For  at  RPM, the 

dominant combined (radial and tangential) AGSF is 
shown in Figure 6. 

 
Figure 6: AGSF output from 100 input 
training parameters 

3.2 Hierarchical model training stage 
Once the training data is available, the Bayesian model can 
be formulated. In this work, it is assumed that the observed 
data ( ) is distributed as per the Normal distribution 
with mean ( ) and variance . Also, heteroscedasticity 
in the observed data is considered i.e., the variance of the 
responses varies along the space of input predictor variables. 
The Bayesian hierarchical model for training stage is shown 
in Figure 7, where it can be seen that  are the 
observed variables and the stochasticity is considered only in 
the model coefficients and the variance. 

Each observed training data ( ) can be 
represented as: 

 

 

where,   is the predictor vector,  represents the 
Hadamard power where each element in  raised to power 
,  are the vectors of unknown 

coefficients,  is the vector of fitting errors 
consisting of modelling errors and is assumed as a zero mean 
Gaussian noise with variance ,  is the degree of the 
polynomial, and  represents the surrogate function. 
For  training samples, the multivariate polynomial 
regression model can be formulated as: 
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where,   

 is the augmented predictor matrix and 
 is the matrix containing 

the unknown coefficients. 
 

 
Figure 7: Training stage hierarchical 
Bayesian model 

The Bayesian model during the training stage is written 
as: 

 
 
 
 

 
The presented model is built in Python framework using 
open-source PyMC3 library [13]. A total of 4 different 
MCMC chains were simulated resulting in 8,000 samples. 
The burn-in sample size (samples that are typically 
discarded during MCMC sampling, refer [11]) was set to 
1,000 for each chain. 

3.3 Bayesian model evaluation 
To evaluate the developed Bayesian model, different 
diagnostics are developed (see [13]). One such widely 
used is Gelman-Rubin statistic, given by   (should 

ideally be equal to 1.0) which measures the ratio of inter-
chains and intra-chain variances. For all the unknown 
parameters in the developed Bayesian model, . 
Another intuitive way of diagnosing the model is to 
replicate the data and then overlay its distribution on the 
distribution of the originally observed data. If the model 
is well-specified, the posterior predictive replicated 
samples must have a similar distribution as the observed 
data. This can be seen in Figure 8, where the kde of 100 
samples is similar to the kde of . 

 
Figure 8: Posterior predictive check with 

 
3.4 Bayesian metamodel exploitation stage 
Based on the input data ( ) as per analyst’s knowledge 
and need (by specifying the distribution’s hyper-
parameters), the posterior predictive samples are 
generated from the trained model using Eqn. [ ] and the 
drawn samples can be seen in Figure 9. The uncertainty 
estimates can be plotted using a Box-and-whisker plot 
describing the spread and the median of the data with 
quartiles. It is clear that the inter-quartile range varies 
across the spatial frequencies and is mostly higher for 
orders greater than 16 (or equivalently,  Hz). 
Therefore, considering the prior sampling distribution of 
input parameters, the variability (or pdf, by taking the kde) 
of AGSF can be described at discrete spatial frequencies. 

A typical metamodel exploitation scheme for AGSF is 
shown in Figure 10. The uncertainty from AGSF posterior 
samples is combined with uncertain mass of each 
subsystem ( ) and the natural frequencies to 
produce uncertain RMS vibration displacements at the 
surface of the IPMSM. 
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Figure 9: AGSF posterior predictive samples 
with new input parameters  

 
Figure 10: Metamodel exploitation stage with 

 (Key to identify different elements in the 
scheme remains same as used in Figure 7) 

 

4. PROBABILISTIC METAMODEL FOR 
POWERTRAIN SUSPENSION ( ) 

In structure-borne noise transmission to the interior cabin, the 
vibration displacement at the motor surface is transmitted to 
the vehicle-body through the mounting system. Considering 
3-point suspension architecture, as shown in Figure 11, the 
total input degrees of freedom (dofs) is 9 corresponding to 
the vibration response at 3 mounts and in 3 directions 
( ). As mentioned before, an internal Stellantis tool has 
been used to estimate the transfer function resulting in the 

force acting on the vehicle-body when provided with the unit 
displacement on each mount and in each direction. 

 

Figure 11: A typical 3-point e-powertrain 
suspension architecture (1: left mount 
connection to the vehicle-body, 2: right mount 
connection, 3: connection to the cradle point) 

To consider stochasticity in the mounting behaviour, the 
position coordinates and stiffness parameters of the 
rubber mounts are considered random. A similar Bayesian 
scheme is implemented as shown the previous subsection 
for training the model. The posterior predictive 
distribution of the resulting transfer function ( ) from 
left mount to the vehicle-body in -direction at a 
particular spatial order  is shown in Figure 12. 

 
Figure 12: Posterior predictive distribution of 
transfer function (CI stands for credible 
interval) 

5. COMBINING TWO METAMODELS 

The posterior samples of uncertain RMS vibration 
displacement from the first metamodel  is then 
coupled with the posterior samples of uncertain transfer 
function from powertrain suspension metamodel . 
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The flowchart of the steps is shown in Figure 13. The 
recomposed force acting on the car-body  is given by, 

 

where,  is the number of posterior samples drawn from 
each metamodel, and  denote the Hadamard product 
between vectors. 
 

 
Figure 13: Flowchart describing the coupling 
of two metamodels to get the input carbody 
force   

The recomposed uncertain input carbody force is then 
coupled with the available measured VTF to get the SPL 
inside the cabin. The frequency range for the 
measurement was  Hz and the response was 
recorded for multiple location inside the cabin (two front 
left seat, two back left seat, etc.). In this study, the mean 
of front left seat measurements was considered. The 
interior SPL through left mount in all directions along 
with the quadratic average of these contributions can be 
seen in Figure 14. The variability in the SPL is due to the 
uncertainties introduced in OCs, macro geometrical 
parameters and control parameters. The same approach 
can be repeated for each mount and in each direction. 
Needless to say, the metamodel  is expected to 
perform quick computations as it must be trained for each 
dof and for different spatial orders. However, when the 
frequency resolution is excessively high, the training 
duration using the current multivariate polynomial 
method remains ineffective. Nevertheless, data reduction 
techniques can be employed on the output space and then 
a similar approach can be employed to reduce the training 
time, which will be a part of future work. 
 

 
Figure 14: Interior SPL through left mount 
for spatial order 8 

6. CONCLUSIONS & PERSPECTIVES 

During the early-stage vehicle design, under insufficient 
information regarding various parameters and architectures, 
deterministic approach is no longer useful, and the resulting 
uncertainties can be modelled through Bayesian approach 
which considers the prior-domain knowledge combined with 
available data. In this work, a two-stage Bayesian metamodel 
is developed from simplified semi-analytical models and 
applied to the structure-borne contribution of e-powertrains 
to the interior SPL. In addition, it was shown that multiple 
metamodels can be used to efficiently propagate 
uncertainties coming from OCs, design and control 
parameters. Hence, under the partial knowledge of the 
complex system made up of several subsystems, an estimate 
of the uncertainty on the output responses can be obtained 
with the presented methodology. 

For perspectives, indeed, uncertainties coming from the 
available measured data could also be considered along with 
efficient data reduction techniques improving the 
performance of metamodel training stage. A comprehensive 
metamodel would then include not just the estimates from 
structure-borne contribution but also from airborne 
contribution. Moreover, such metamodels would allow to 
perform efficient sensitivity analysis to infer information 
about the most influential parameters. 
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