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ABSTRACT

Improving room acoustics can greatly enhance our listen-
ing experience in venues, but is often expensive, requir-
ing expert knowledge and installation of treatment mate-
rial. This study explores using generalised optimisation
techniques to recommend acoustic treatments. The pro-
posed method uses random configurations of a paramet-
ric room model and its simulated acoustic properties as
training data for a linear regression model. An optimisa-
tion stage then identifies parameters to minimise or max-
imise an acoustic property. In this study, positions of ab-
sorption panels were optimised in two tasks; 1) Minimise
the T30, 2) Acoustically isolate two source-receiver pairs,
assessed by a Signal to Noise Ratio (SNR) metric calcu-
lated from simulated acoustic data. In task 1, the method
generated a panel arrangement which closely resembled
literature recommendations, demonstrating the method’s
potential for producing solutions regarded as optimal. In
task 2, the generated arrangement yielded an SNR of 8.0
dB, greater than the best random arrangement from the
training data (7.6 dB). This highlighted the method’s po-
tential to produce novel designs, instead of simply repli-
cating high-performing training data. The effectiveness of
the generalised approach suggests a similar method could
be used for less trivial cases, such as furniture positioning,
non-acoustic material installations, and seating areas.
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1. INTRODUCTION

Bad acoustics can make a space very unpleasant, with
79% of people having left a restaurant, cafe or pub be-
cause of noise levels [1]. Current solutions employ spe-
cialist acoustics companies who survey the space and gen-
erally calculate a surface area of acoustic absorption mate-
rial to install, aiming to reduce the reverberation time (RT)
to a target level, with standards such as DIN18041 [2]
detailing recommended RT values for different environ-
ment uses. Optimising for RT is widely practiced as basic
calculations such as the Sabine formula [3] can be used
to calculate the required surface areas of absorption ma-
terial. An established literature of recommendations are
then used to determine where to place the material. [4]
summarises some of these recommendations as well as the
findings from other studies ( [2], [5], [6], [7], [8] ) which
include; large areas of absorption on the ceiling, absorp-
tion or diffusion on the rear and/or front walls to com-
bat flutter echoes, and applying absorption in the middle
areas of walls. While these recommendations are valu-
able for many rooms, they are generalised, and focused
on ’shoe box’ shaped classrooms, meeting rooms, and of-
fices, and so may not apply in unusually shaped rooms
such as multi-space restaurants.

To create optimal installations, especially for unusual
rooms and more specialist applications, multiple config-
urations of panels may need to be tested to identify the
best. Since this is physically impractical, and the Sabine
equations do not take position into consideration, simu-
lations can be used to estimate the acoustic performance
of each configuration. Geometrical Acoustics (GA) [9] is
widely used and studied for approximating the acoustic
properties of spaces. GA is based on modelling the prop-
agation of sound waves as rays interacting with geometry.
This also allows for other acoustically significant factors
to be modelled, such as sound source locations, soft fur-
nishings, and room shapes, which may have an impact on
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which configuration is preferable. However, the expertise
and time required to set up and perform a simulation of-
ten limits the configurations it’s possible to explore. For
example, [4] uses four and five configurations for their
two case study rooms, comparing different distributions of
ceiling and wall panels based on recommendations. The
expertise required also makes GA inaccessible for every-
day spaces, which could benefit from being able to test
multiple configurations.

To provide recommendations for unusual spaces and
where existing literature may be insufficient, it could be
beneficial to be able to automate the simulation of many
randomised configurations and use a machine learning ap-
proach to learn and predict optimal designs. Inspiration
for this comes in part from the field of interpretable ma-
chine learning [10], where the trained model itself can
be used to yield insights, not just the output. For exam-
ple, by training an acoustic metric predictor, the model
could then be used to reveal which attributes of the room
contribute most to that metric, positively or negatively.
This has advantages over a more ’black-box’ approach in
which these insights are often more obscured. This pre-
liminary study will explore a simple example of such an
approach by using the statistical feature importances of
a linear regression model. Such a method may be used
for optimising any acoustically significant objects in oc-
cupied spaces, provided they could be expressed in a para-
metric and meaningful way. For example, a restaurant
could model the potential positions of dividing walls in
a space parametrically, train a regression model to predict
RT based on these parameters (using GA and randomised
parameters to create a dataset of acoustic performances),
then use the model to gain insights on optimal placements.

For this preliminary study, a conventional optimisa-
tion case will be explored to assess if the proposed method
produces similar configurations to established recommen-
dations. Therefore, the ideal placement of a fixed number
of panels to reduce RT in a large reverberant space will be
the subject of optimisation. This study will aim to test the
effectiveness of a generalised approach such that in later
studies more non-trivial optimisations could be tested.
There is currently no system which approaches variable
optimisation in room acoustics in this way. Such a sys-
tem could save spaces significant cost in installing acous-
tic panels, by presenting affordable alternatives which ex-
tract as much performance as possible from constrained
resources.

To assess the method, two objectives will be tested,
the second beginning to investigate how more case-

specific objective goals can be explored by the generalised
regression approach:

• Reduce the RT of a space using a budget con-
strained, fixed number of panels.

• Acoustically isolate two parts of the room from
each other, using a Signal to Noise Ratio (SNR)
metric.

2. METHOD

The case study room is provided by Dream Factory 1 , a
company who provides creative spaces for start-ups, in-
cluding vocal recording rooms, filming sets, and more.
The main space of a recently acquired venue, Figure 1, is
to be fitted as a video recording space. As such, the large,
hard, flat walls, floor and ceiling need to be acoustically
damped. Also, they would like to be able to have multi-
ple recording sessions simultaneously in the same room,
requiring a degree of acoustic separation between parts of
the rooms.

Figure 1. Interior photo of the main space in the new
Dream Factory venue.

A 3D model of the room is made, Figure 2, with
the locations of the virtual sound source and microphone
shown as a sphere and cube respectively. These were the
locations used in the on-site acoustic measurements so
that the simulation model can be matched to the observed
results. Note the smaller left hand room is separate from
the main room and not part of the study, but included for
illustrative reference of the ground floor layout.

CATT Acoustic v9.1 2 has been used for all GA
simulations, which makes use of a cone tracer to esti-
mate energy echograms and pressure impulse responses.
Sound sources are modelled as omni-directional with a

1 https://www.dreamfactory.ventures
2 https://www.catt.se/
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Figure 2. Diagram of sound source and receiver lo-
cations, with room dimensions (m)

flat frequency response. First order diffraction is mod-
elled, and a ray count of 10,000 is used which in initial
testing showed to be sufficient for stable and converged
results. The simulation results, while they are approxi-
mations, will be treated as ground truth for the purposes
of training and evaluating the optimisation models. There
are several metrics for RT; in this study T30 will be used,
defined as the time in seconds it takes for the initial dB
level of the sound to decay by 60 dB, estimated by mea-
suring the first 30 dB decay. This measure is commonly
used in acoustic measurements to extrapolate the RT60
industry standard. The linearly weighted T30 output by
CATT Acoustic will be used, which is based on its pres-
sure impulse response estimation.

For all GA simulations, it is necessary to calibrate
the material properties so that the simulated T30 value
matches a known on-site measurement of T30. Start-
ing with standard material properties found in the CATT
library, these were manually refined until the T30 of
the simulation closely matched the on-site measurement,
3.39 s and 3.47 s respectively. T30 was also matched
for the different frequency bands between the two envi-
ronments, together with other parameters such as Early
Decay Time (EDT). On site acoustic measurements were
recorded on a smartphone using a loud clap as an im-
pulse, approximately 0.75 m from the microphone. Au-
dio recordings were processed in the Aurora pluggin for
Audacity 3 to calculate T30. This was repeated multiple
times to ensure consistent results.

Automation tools for this work have been written
in Python and are accessible on GitHub 4 . The mod-

3 http://www.angelofarina.it/Public/ Aurora-for-Audacity/
4 https://github.com/otjones/thesis

elling of the room was done in the open-source software
Blender 5 , chosen for its Python API which will be used
to control the variable parts of the room (acoustic panels).
Python scripts export the necessary data into the appropri-
ate CATT file formats. Data outputted from CATT Acous-
tic is processed in Python as well.

Acoustic panels come in a range of shapes and sizes.
To keep the optimisation task simple for the purposes of
this preliminary study, a single panel type will be used.
One of the most popular types of panel is the 600 mm
x 1200 mm shape, available from multiple manufactur-
ers. To simplify the acoustic panel placement variables
in this study, inspiration can be taken from the approach
used by [11], where walls were discretised into tiles with
absorption coefficients and a least-squares method then
found the optimal distribution of absorption coefficients.
In this way, all possible acoustic panel locations are pre-
conceived as shown in Figure 3.

Figure 3. All 397 possible panel positions.

At maximum capacity, the room can hold 397 panels
when positioned in this way. The panels are assumed to
be suspended from the ceiling, and slightly floating from
the walls. The height of the ‘false ceiling’ of panels is
a variable to be optimised, taking values from 4.0 m to
6.0 m in steps of 0.4 m. The floor is modelled as carpeted.

3. INITIAL STUDIES

3.1 Effect of Panel Number and Placement on T30

The first question to address is whether the installation lo-
cation makes any difference to the performance of acous-
tic panels. From the possible 397 panels in the room,
n panels are chosen at random, for n increasing in steps of

5 https://www.blender.org/
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25 from 25 to 200. This is repeated 16 times to get multi-
ple different arrangements of the same number of panels.
The rooms are then simulated, and the T30 recorded. In
this test, the ceiling panel height is fixed at 6.0 m.

Figure 4. T30 (s) for fixed numbers of acoustic pan-
els, with 16 random configurations for each set quan-
tity.

Figure 4 shows significant variability in the simulated
T30 times for each group of n panels, especially for rooms
with few panels. In fact, some rooms with 50 panels had
a worse T30 than some rooms with only 25 panels, sug-
gesting that some panel installation locations do not help
to reduce T30 reverb at all. This suggests that acoustic
panel placement can make a significant difference and is
something worth optimising, and may also suggest that
the locations of other materials are significant too. Based
on these data, 75 is chosen as a suitable number of panels
for which to find optimal positions.

4. OPTIMISATION

A dataset of randomised panel configurations was gener-
ated and simulated as training data for the linear regres-
sion model. The objective is then for the model to learn
which panels are most effective, and to provide the model
with a mechanism for suggesting a new, optimal design.
While DIN18041 specifies ideal target T30 times, this
optimisation approach is unconstrained in nature, simply
suggesting which attributes increase or decrease T30. In
this study, should T30 be reduced too much, the number
of panels can simply be reduced.

4.1 Data Representation

To efficiently represent the design space, 42 ‘zones’ of
panels are designated as shown in Figure 5, where the
number of panels present in each zone is recorded as a
fraction of the total possible. This approach therefore
assumes the slight differences in panel positions within
the zone should be small and negligible, and when im-
plementing a generated design, the panels could be put
anywhere in their zone. Using this as an input to a linear
regression model means the trained coefficients will rep-
resent the relative importance of each zone in predicting
T30. Coefficients are normalised by the size of the zone,
as for example a 0.5 coverage of a zone of 12 is more
likely to be effective than a 0.5 coverage of a zone of 8,
due to the higher number of panels. This creates 42 vari-
ables to describe the state of the room, with an additional
43rd used to describe the false ceiling height.

Figure 5. 42 panel zones.

4.2 Linear Regression Model for Reducing T30

The training dataset consists of 1000 random configura-
tions of 75 panels, each recorded as a vector of 43 pa-
rameters. For each configuration, the T30 is simulated
and recorded. A linear regression model from the SciKit
Learn 6 Python library is fitted to this data, using a train-
test split of 70:30. The simulated vs predicted T30 times,
Figure 6, show a very broad spread and loose correlation,
albeit in the correct positive direction with the line of best
fit a near 1:1 mapping of simulated to predicted T30 val-
ues.

Retraining the model on randomised train-test splits
and at different dataset sizes gives an idea of the stability
of the model. Dataset sizes from 200 to all 1000 in steps

6 https://scikit-learn.org/stable
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Figure 6. Plot of simulated T30 times vs T30 times
predicted by linear regression, all data.

of 100 were each trained 50 times. The R Squared score,
Figure 7, shows that at datasets of over 500 configurations
the models seem to stabilise, with narrowing spreads and
R values just under 0.2, which while low could be suffi-
cient in identifying important zones. A model trained on
all 1000 rooms will be used going forward.

Figure 7. Rate of convergence of linear regression
with 50 random samples per dataset size, R squared
score from test data shown.

Zones with greater coefficients suggest that adding
more panels here increases T30 more so than other zones
with smaller coefficients. Therefore, the zones with the

smallest coefficients might be the best zones to place pan-
els. Using this concept and applying a ‘first past the post’
approach, a new room configuration is created by placing
panels in these low-coefficient zones until the 75 panel
limit is reached. This configuration, Figure 8, gives a sim-
ulated T30 of 0.76 s, significantly lower than the best ran-
dom configuration of 1.0 s, Figure 4. The layout of panels
closely matches some of the literature, with large cover-
age on the two parallel walls perpendicular to the length
of the room, and some panels on the other pair of walls.
The lack of ceiling panels stands out as going against the
recommendations, however, the carpeted floor in the room
model may eliminate enough reflections in the vertical di-
rection to lessen the benefit of ceiling panels. It is promis-
ing a regression model with only randomised training data
could produce a panel layout which makes some intuitive
sense, supported by literature recommendations and stan-
dards.

Figure 8. Panel configuration for reducing T30 gen-
erated by linear regression based method.

4.3 Considering Each Zone Independently

To inspect the behaviour of the linear regression model,
the zones of panels can be simulated one at a time at their
full coverage. Figure 9 shows that the reduction in T30
(normalised per panel) varies significantly from zone to
zone. If the best zones are taken from this list and pop-
ulated with 75 panels, the arrangement generated (pan-
els only in the middle of the two walls perpendicular to
the length of the room) produces a T30 of 1.08 s, worse
than the arrangement produced by the linear regression
model. This suggests the linear regression model is not
just choosing zones in isolation, but can take all zones
into account simultaneously to find optimal balances of
zones. The model may therefore have identified a point
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of diminishing returns of using panels in these zones on
the end walls when it starts to suggest panels on the width
of the room. It is also worth noting these zones on the
width of the room are the closest points on the walls to the
virtual sound source and receiver, and so are potentially
able to absorb more direct sound than further away pan-
els. This may suggest the linear regression method was
able to effectively balance the two concepts of reducing
flutter echoes and that panels closest to the source absorb
early direct sound before it reflects.

Figure 9. Reduction in T30 (normalised per panel)
for each zone in the room.

4.4 Linear Regression Model for Isolating Two
Spaces

To test if the proposed method can generalise to different
goals, a second optimisation problem is presented. The
problem is motivated by the Dream Factory’s intention to
have two sets of video recordings happening simultane-
ously in the space at given locations. There are now two
sound sources (spheres) and receivers (cubes), a pair on
the left and the right, mimicking an actor presenting to a
camera a short distance away, Figure 10. The goal is for
each of the two receivers to maximise the level of their
target source, and minimise the level of the other. In other
studies this problem is sometimes referred to as ”irrelevant
speech” and measured using the Speech Transmission In-
dex (STI) [12]. In this study however, an alternative mea-
sure is formed to test optimising for a more use-case spe-
cific goal, leveraging the generalised approach. A ‘Signal
to Noise Ratio’, SNR, as calculated in Equation 1 where

R1(S1−S2) denotes the dB SPL level of Source 1 minus
Source 2 as heard from Receiver 1.

R1(S1− S2) +R2(S2− S1)

2
(1)

For this objective, the highest linear regression coeffi-
cients are preferred as the SNR is to be maximised. A new
piece of variable geometry is also added to the room setup;
two rows of free standing panels (600 mm x 1800 mm) to
separate the source-receiver pairs, eliminating direct paths
between the two, as shown in Figure 10. These are con-
trolled by parameters for the number of panels in each
row, and spacing between each panel. A predefined list
of potential combinations is made that fits the space, with
the linear regression model aiming to find whether higher
or lower values of the four inputs are beneficial, and their
importance compared to the wall and ceiling panels. The
position of the starting point of the lines of panels is fixed.

Figure 10. Diagram of source (sphere) - receiver
(cube) pairs and example configuration of the floor
standing panels added.

A dataset of 392 randomised room configurations is
generated, each with a limit of 75 panels. From this
dataset, the SNR achieved in the simulations range from
3.1 dB to 7.6 dB. Depending on the random train-test
split, the linear regression models achieved R values of
0.3 to 0.5 showing fair correlation, suggesting the model
has learnt relatively well which panel configurations im-
prove the SNR. A significantly negative ceiling height
coefficient suggests lowering the ceiling increases SNR.
In this room configuration therefore, the ceiling is set to
its lowest possible height. This also presents one of the
key limitations of this approach, where it is only possi-
ble to tell whether a parameter should be increased or de-
creased, with difficulty identifying any ideal intermediary
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values. Using the coefficients from 16 models fitted to
randomised train-test splits, 16 candidate rooms are cre-
ated to be simulated. One of these configurations had an
SNR of 8.0 dB, a result greater than any of the random
samples in the dataset. This suggests the model was able
to learn from the best of each configuration, and then pro-
duce even better, unseen designs.

Figure 11. Panel configuration for increasing SNR
generated by linear regression based method.

It is encouraging that the panel arrangement pro-
duced, Figure 11, looks very different to the previous T30
optimised configuration, suggesting that the model under-
stands panels in different places have different benefits.
For example, panel locations could be labelled as ‘good
for reducing T30’ or ‘good for increasing SNR’. Future
work could investigate how to balance multiple objec-
tives. Analysing the panel layout can reveal some pos-
sible explanations for why certain zones were considered
more effective. A trivial observation is the inclusion of
all the freestanding panels in the wall between the source-
receiver pairs, blocking a lot of the direct path. Further in-
sights can be gained using a visualisation to represent the
direct path length from each of the sound sources. Using
the right most sound source as an example, the free stand-
ing walls seem to cast a ‘shadow’ on the opposing wall,
Figure 12. The linear regression appears to take this into
account, and prefers panels on the upper half of the walls
consistently, where they presumably absorb a larger por-
tion of the direct sound path, reducing the signal reaching
the opposing receiver. The ceiling panels were also de-
termined to be as low as possible, and centred around the
mid point of the source-receiver pairs, again presumably
as these panels prevent a large amount of the first order
ceiling reflections reaching the opposing receiver.

Figure 12. Source 1 direct ray visibility, with energy
intensity approximation. Ceiling panels in raised po-
sition for visual clarity

5. CONCLUSION

5.1 Limitations

The method in this study exploited the ability to represent
room parameters monotonically, i.e. increasing the num-
ber of panels in a zone is highly likely to decrease T30,
making it possible to use coefficients to minimise or max-
imise each parameter. This may prove more challenging
as the complexity grows and other variables are consid-
ered, for example furniture placement. Also, instead of
the ‘first past the post’ approach taken to decide which
parameters should be considered for implementation, a
model which could balance all parameters may be able
to create more nuanced and better performing solutions.
To achieve this, the current method could be extended, for
example to train a model, and then to feed the model many
new and unseen random inputs to find the set of input pa-
rameters which achieve the best objective score. The false
ceiling height parameter exposes another area of weak-
ness, as this value changes the behaviour of the panels in
these zones. This makes the performance of these zones
more of an average over various ceiling heights, obscuring
the performance of each zone at each ceiling height. Rep-
resenting each zone at each ceiling height as a separate
variable may improve model accuracy.

5.2 Outcomes

This study shows that the placement of acoustic panels in
a space can significantly impact their effectiveness, and
suggests that the placement of other acoustically signifi-
cant objects may also make a difference to acoustic met-
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rics, highlighting the potential gains in considering spatial
variables in room treatment. This study also demonstrates
it is possible to train a simple linear regression model on
randomised panel configurations and simulated GA met-
rics. The linear regression model coefficients were used
to create a configuration for reducing T30, which closely
replicated best practices and recommendations. In a sec-
ond scenario, the method produced configurations for in-
creasing an SNR metric, which may have been difficult to
arrive at analytically. This also demonstrates that with dif-
ferent objective measures, the method can create different
and uniquely optimised configurations, provided the de-
sired metrics are all simulated for each set of geometry.
As long as the room configuration can be represented in
a meaningful way, it is likely the optimisation techniques
discussed will be able to design optimal configurations.

5.3 Future Work

To address the limitation of the coefficients only being
able to minimise or maximise variables, other methods
could be used, such as using gradient descent to find the
variable values which give the minimum output of the
model. More sophisticated approaches could also be used,
such as modelling the room with a neural network, and
then feeding in a large set of random configurations to
identify those which are predicted to be the best perform-
ing.

With further research it may be possible to write more
efficient, purpose driven acoustic simulations. For exam-
ple, the results from the SNR experiment seem to sug-
gest the most important factor for improving SNR was to
maximise the area of the wavefront that was absorbed be-
fore the first bounce. If more evidence could be gathered
to support observations like this, an acoustic ray tracer
only concerned with low order rays could be written to
very quickly approximate acoustic results for the specific
purpose of optimising certain metrics. Advances like this
could bring powerful acoustic optimisation into the hands
of many more venues and buildings looking to improve
their spaces.
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