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ABSTRACT

Researchers have employed numerous array configura-
tions and sampling densities to thoroughly measure the
sound radiations of live sources, such as musical instru-
ments and speech. The number of sampling positions
has varied from fewer than a hundred to over a thousand,
with measurement inconsistencies highlighting a knowl-
edge gap in the number of sampling positions required for
spherical directivity measurements. This work presents
theoretical methods and practical metrics to assess the re-
quired number of sampling positions for a given source to
mitigate spatial aliasing. Theoretical developments show
that the number of necessary sampling positions closely
relates to source geometry due to the spatial filtering ef-
fects of far-field propagation. Initial results from theoreti-
cal models generalize the approach to live sources.

Keywords: directivity, sampling, musical instruments,
speech

1. INTRODUCTION

Acoustic directivity measurements are essential tools for
establishing the radiation patterns of sources. Their data
have applications in room acoustical design [1, 2], au-
ralizations [3, 4], microphone placements [5–7], sound
source modeling [8, 9], and other areas. Despite the sig-
nificance of these data, the number of discrete sampling

*Corresponding author: samuel.bellows11@gmail.com.
Copyright: ©2023 Bellows and Leishman. This is an open-
access article distributed under the terms of the Creative Com-
mons Attribution 3.0 Unported License, which permits unre-
stricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

positions employed for published measurements has var-
ied dramatically from fewer than a hundred [10–13] to
well over a thousand [14–17]. Meanwhile, Audio Engi-
neering Society (AES)-standardized directivity measure-
ments with 10◦ and 5◦ dual-equiangular resolutions [14]
have become ubiquitous for loudspeaker assessments and
room-acoustical simulation software [18, 19]. Neverthe-
less, the standard provides little guidance on the maxi-
mum usable frequency for a given source using either res-
olution. Furthermore, sampling inconsistencies between
published works highlight ambiguities regarding the most
suitable number of sampling positions for effective direc-
tivity measurements.

Researchers have long applied spherical harmonic ex-
pansions of measured acoustic pressures for directivity
applications [12, 20]. The expansions serve as the an-
gular component of the Helmholtz equation’s solution in
spherical coordinates [21] and allow continuous, rather
than discrete, representations of the pressure fields. Pre-
vious works have identified relations between the number
of discretely sampled positions and the maximum spher-
ical harmonic degree feasible in such expansions without
significant spatial aliasing effects [22]. Other works have
sought to relate source geometry and other properties to
the maximum degree required for source representations,
e.g., through multipole expansions [20, 23]. However, re-
searchers and practitioners will benefit from additional
and more concrete developments, including methods to
determine limiting frequencies due to spatial aliasing. An
improved understanding of such sampling considerations
will enable them to make more successful directivity mea-
surements.

This work approaches spatial sampling by consider-
ing the effect of far-field propagation on a source’s radi-
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ated pressure spectrum. Sound radiation theory demon-
strates that far-field propagation behaves as a frequency-
dependent low-pass spatial filter. This model describes the
relationship between the maximum spherical harmonic
degree and source geometry. Once identified, this degree
determines the number of required sampling positions. A
method for estimating source order based on measured di-
rectivity functions yields a practical tool for users to un-
derstand when spatial aliasing limits applications of spher-
ical harmonic expansions. Results for various musical in-
struments and speech serve as examples of the theory’s
application for practical cases.

2. THEORETICAL BACKGROUND

2.1 Spherical Harmonic Expansions

Spherical harmonic expansions provide a helpful frame-
work for understanding directivity measurement sampling
considerations. Consider a square-integrable function f
defined over the sphere so that it may be expanded as [24]

f(θ, ϕ) =

∞∑
n=0

n∑
m=−n

fm
n Y m

n (θ, ϕ) (1)

where Y m
n are the spherical harmonics of degree n and

order m [25] and fm
n are the expansion coefficients.

Two important characteristics of the spherical harmon-
ics motivate their choice as basis functions. First, as the
eigenfunctions of the Laplace-Beltrami operator over the
sphere, they serve as the angular component of the so-
lution to the Helmholtz equation in spherical coordinates
[21, 26]. As a result, spherical harmonic expansions find
application in acoustical and near-field acoustical holog-
raphy [21], source centering algorithms [27], and other
wave-based representations of sound fields [9]. Second,
the spherical harmonics form an orthonormal basis for the
Hilbert space of square-integrable functions defined over
the sphere [24]. This essential feature ensures special con-
vergence properties of spherical harmonic expansions.

Understanding the expansion’s convergence is essen-
tial because discretely sampling the sphere limits the max-
imum resolvable expansion degree [22]. Consequently,
the pressure field produced by an acoustic source must be
band-limited to some maximum degree N to avoid spatial
aliasing effects. One approach to evaluate an expansion’s
convergence is through its norms [28]. From Parseval’s
identity [24, 26]:

∥f(θ, ϕ)∥2L2 = ∥fm
n ∥2ℓ2 (2)

where

∥f(θ, ϕ)∥2L2 =

∫ 2π

0

∫ π

0

|f(θ, ϕ)|2 sin θdθdϕ (3)

is the norm in the function space of square-integrable
functions L2 and

∥fm
n ∥2ℓ2 =

∞∑
n=0

n∑
m=−n

|fm
n |2 (4)

is the norm in the sequence space of square-summable se-
quences ℓ2 [29]. It is convenient to represent the sequence
space’s norm in terms of the energy per degree metric [24]

En =

n∑
m=−n

|fm
n |2 (5)

so that

∥fm
n ∥2ℓ2 =

∞∑
n=0

En. (6)

The energy per degree represents a function’s spher-
ical spectrum, indicating which expansion degrees con-
tain the most “signal energy.” While one could consider a
spherical spectrum analysis over both degree n and order
m, this approach is not considered in this work because
the order m of a spherical harmonic closely relates to ro-
tations of degree n polynomials over the sphere [24]. In
other words, for a fixed degree n, rotations of the function
f “shuffle” energy between the coefficients of different
orders m. However, their energetic sum represented by
En remains constant [24]. Thus, En serves as a rotation-
invariant metric for spatial-spectral analysis.

Next, defining a truncation parameter as

γ(N) =

N∑
n=0

En

∞∑
n=0

En

(7)

provides a means to monitor the convergence of an ex-
pansion over increasing truncation degree N . Clearly, as
N → ∞, γ → 1. Additionally, because En ≥ 0 [See
Eq. (5)], the sequence defined by γ monotonically in-
creases. Although many practical sources are not truly
band-limited, they may behave approximately so. Evalu-
ating the rate of convergence of γ allows one to quantify
when a function sufficiently behaves as band-limited. For
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example, increasing N until γ surpasses a value of 0.98
ensures that the exclusion of coefficients with n > N
loses no more than 0.1 dB of signal energy.

A simple theoretical source distribution illustrates
these convergence trends. A spherical cap function [22,
30] finds use in applications such as estimating radiation
from loudspeakers [30, 31], horns [32], and speech [17].
Figure 1(a) plots the energy per degree En on a logarith-
mic scale for a spherical cap with cap half-angle θ0 = 30◦.
The spectrum reveals that the most significant expansion
coefficients fall within 0 ≤ n ≤ 10. Additionally, the rel-
ative contribution of expansion coefficients with n > 50
has decayed to over 20 dB down from the maximum. Fig-
ure 1(b) plots γ over increasing truncation degree N . The
value of γ quickly exceeds 0.9 by N = 10; however,
achieving γ = 0.98 requires an N = 58 degree expan-
sion. As a reference, Fig. 1(c) plots the spherical cap
function expanded with select N to allow comparisons be-
tween increasing values of γ and the converging spherical
function. Although the expansion technically requires in-
finite terms to attain convergence, analysis of En and γ
provides insight into when the function behaves approxi-
mately as band-limited.

2.2 Far-Field Propagation as a Filter

An arbitrary source’s spherical spectrum is generally un-
known. However, the maximum necessary expansion
degree N determines the number of sampling positions
needed and relates to the maximum usable frequency for
spherical-harmonic-based analysis [22]. Thus, a means
to estimate N before measurement would benefit prac-
tical directivity measurements. This section shows how
far-field relations enable a method for estimating N for a
given source based on its geometry.

Consider an acoustic source of maximum radial ex-
tent Rs from the origin. If a notional sphere of radius
r = Rs encloses the source, then the pressure on this
sphere may be expanded as [21]

p(Rs, θ, ϕ, k) =

∞∑
n=0

n∑
m=−n

pmn (k)Y m
n (θ, ϕ) (8)

where k is the wavenumber and pmn (k) are the frequency-
dependent expansion coefficients. Because these expan-
sion coefficients depend on the source, one can infer lit-
tle about a suitable truncation degree N without measure-
ment or modeling.

For r > Rs, the pressure becomes [21]

p(r, θ, ϕ, k) =

∞∑
n=0

n∑
m=−n

h
(2)
n (kr)

h
(2)
n (kRs)

pmn (k)Y m
n (θ, ϕ)

(9)

where h
(2)
n are the spherical Hankel functions of the sec-

ond kind of order n. When considering wave propaga-
tion from concentric spheres centered about the origin, the
quotient

Gn(r, k) =
h
(2)
n (kr)

h
(2)
n (kRs)

, r > Rs (10)

serves as a “propagator” [21], modifying the pressure ob-
served at radius Rs to that observed at radius r. This
propagator behaves as a spatial filter dependent upon the
choice of radial observation distance r, spherical Hankel
order n, and wavenumber k. Applying the large-argument
relation for the spherical Hankel functions [25] yields the
far-field result

pff (r, θ, ϕ, k) =

e−ikr

kr

∞∑
n=0

n∑
m=−n

in+1

h
(2)
n (kRs)

pmn (k)Y m
n (θ, ϕ), (11)

so that the far-field propagator becomes

G(ff)
n (k) =

in+1

h
(2)
n (kRs)

. (12)

The source’s unnormalized far-field directivity function
follows as

Dff (θ, ϕ, k) =

∞∑
n=0

n∑
m=−n

amn (k)Y m
n (θ, ϕ), (13)

where
amn (k) = G(ff)

n (k)pmn (k) (14)

are the far-field directivity expansion coefficients.
Because most applications employ far-field directivi-

ties, the filtering effect of the far-field propagator is par-
ticularly pertinent. Figure 2 plots the energy per degree of
G

(ff)
n as a function of the Helmholtz number kRs and ex-

pansion degree n. Color indicates the relative level on a 25
dB scale normalized to the maximum value for each fre-
quency. White indicates the most significant coefficients,
whereas black indicates the least important coefficients.
In this surface plot, a vertical “slice” would map to an
energy-per-degree plot similar to Fig. 1(a).
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Figure 1. (a) Energy per degree En for a spherical cap function with cap half-angle θ0 = 30◦. (b) Truncation
parameter γ over increasing maximum expansion degree N . (c) Expansions of the spherical cap function for
select N . Similar to Fig. 1.14 of Ref. [22], an added radial offset enhances visualization of the spherical
function.

The plotted far-field propagator’s spectrum reveals a
frequency-dependent, low-pass filtering effect. An over-
laid magenta dashed line represents n = kRs, the approx-
imate low-pass filter cut-off. As a result, far-field propaga-
tion tends to strongly attenuate the expansion coefficients
pmn (k) with n ⪆ kRs. Consequently, when sampling in
the far-field of the source, the relation N ≈ kRs provides
an estimate of the maximum necessary N for expansion.
This result coincides with Weinreich’s observation that a
source of maximum dimension Rs requires roughly up to
spherical Hankel function order N ≈ kRs for its repre-
sentation [20]. This maximum N required for sufficient
representation is the source order. It is frequency depen-
dent and linearly related to the source geometry.

To further demonstrate the impact of the low-pass fil-
tering effect, Fig. 3 compares the spherical spectrum of
the near-field and far-field pressure for a radially vibrat-
ing cap on a sphere of radius a with a cap half-angle
θ0 = π/10. Figure 3(a) plots the energy per degree for
the pressure evaluated at the surface of the radius Rs = a
sphere. The pressure’s near-field spectrum shows similar
lobing effects, evidenced as horizontal bands, to the en-
ergy per degree of the spherical cap function seen in Fig.
1(a). Additionally, it is clear that in the near-field, some
coefficients with n > kRs contain essential signal energy.

In contrast, the far-field directivity coefficient’s spec-
trum in Fig. 3(b) demonstrates that far-field propagation
filters out the coefficients with n ⪆ kRs. Consequently,
while it may be challenging to determine the necessary

Figure 2. Energy per degree of the far-field propaga-
tor G(ff)

n over increasing kRs.

expansion degree for arbitrary sources in the near field,
far-field propagation allows one to estimate the required
expansion degree based on source geometry. For example,
modeling a loudspeaker as this spherical source would re-
quire at least an N = 37 degree expansion for a dimension
of Rs = a = 0.1 m and a maximum desired frequency of
20 kHz.
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Figure 3. Energy per degree of the pressure pro-
duced by a radially vibrating cap on a rigid sphere
of radius a, evaluated at two radial distances: (a) on
the sphere’s surface and (b) in the far field.

2.3 Discrete Sampling Relations

Once estimated for a given source, the source order N de-
termines the necessary number of sampling positions Q.
As detailed in Ref. [22], there are numerous approaches
to sampling the sphere, such as Gaussian, equiangular, or
uniform and quasi-uniform sampling. Each scheme has
advantages and disadvantages regarding efficiency and
practical implementation; however, they generally follow
the trend that Q ∝ (N + 1)2. For example, a Gaus-
sian sampling scheme can exactly calculate spherical har-
monic expansions up to degree N =

√
Q/2 − 1 [22].

Continuing the example from Sec. 2.2, a 0.1 m radius
spherical model of a loudspeaker would require at least
Q = 2(37 + 1)2 = 2, 888 measurement positions config-
ured for Gaussian sampling for spherical-harmonic-based

analysis up to 20 kHz. Although the number of measure-
ment positions will vary depending on the sampling con-
figuration, the spherical-harmonic-based framework pro-
vides an exact estimate of the required sampling positions
for a given spherical harmonic expansion degree N .

3. METHOD FOR ESTIMATING THE
EFFECTIVE SOURCE DIMENSION FROM DATA

The simple geometries of theoretical models permit
straightforward source-order predictions based on physi-
cal arguments. However, there are benefits to determining
the source orders of more complexly shaped bodies from
measured data, which requires predicting Rs, a source’s
effective acoustic dimension. Because source order varies
roughly linearly with respect to frequency, a least-squares
fit to the line N = kRs can predict Rs based on calculated
values of N at select wavenumbers k. These values fol-
low by determining the minimum N necessary to obtain a
selected truncation value using Eq. (7), such as γ = 0.98.
Section 4 demonstrates this approach for select musical
instruments and voice directivity measurements.

4. RESULTS FOR MEASURED SOURCES

4.1 Musical Instruments

An interesting musical instrument directivity example in-
volves the previously reported radiation from a gamelan
ageng lanang gong [33]. Figure 4 shows the gong’s spher-
ical spectrum. The overlaid green circles indicate the de-
gree N at which γ = 0.98 for 35 modal peaks under 1.5
kHz. The overlaid magenta dashed line shows the associ-
ated least-squares fit to N = kRs with Rs = 0.54 m. The
latter value corresponds well to a rough geometrical esti-
mate for Rs based on the gong’s 0.41 m radius and the ad-
ditional support structures used to suspend the instrument.
Assuming a maximum N = 34 expansion afforded by
the measurement’s 5◦ dual-equiangular sampling scheme
would limit spherical harmonic analysis to about 3.4 kHz
without spatial aliasing.

4.2 Speech

Because voice directivity is critical for audio, telecom-
munications, and acoustical room designs, understanding
spatial sampling requirements for speech has many prac-
tical benefits. Radiation from the human voice is also an
interesting case study because sound predominately orig-
inates from the mouth, which is significantly smaller than
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Figure 4. Spherical spectrum of a gamelan ageng
lanang gong’s far-field directivity.

the entire body. Although torso diffraction strongly in-
fluences voice directivities [34], it is common to simu-
late voice radiation using only an isolated mannikin head.
These differences lead to an ambiguity of whether the
effective source radius Rs should incorporate the entire
body or just the head.

Figure 5 plots the spherical spectrum at the measure-
ment radius for a female talker [17]. Interestingly, the
spectrum shows a strong white band that does not ex-
ceed n = 5 by 4 kHz. An overlaid orange dotted line
at N = kRh, where Rh = 0.09 m represents the approxi-
mate head radius, suggests that these highest-magnitude
coefficients may relate to the radiation from the mouth
and head. The overlaid magenta line indicates the least-
squares fit using γ = 0.98; it corresponds to a source
dimension of Rs = 0.44 m. This figure agrees much
better with rough geometrical approximations considering
the average spatial extent of a seated human talker.

Figure 6 compares various narrowband (1 Hz reso-
lution) speech directivity balloons at 500 Hz to explore
the impact of neglecting the lower-amplitude coefficients
above n = kRh. Figure 6(a) plots the FRF-based direc-
tivity acquired from a multiple-capture transfer-function
method on the measurement surface [17]. Even at this
lower frequency, significantly reduced levels behind the
seated talker appear.

The values k = 9.16 m−1 at 500 Hz and Rh = 0.09
m would suggest that N = ⌈kRh⌉ = 1 is sufficient for
source representation, where ⌈ ⌉ is the ceiling function.

Figure 5. Spherical spectrum of a female talker’s
measured directivity.

Accordingly, Fig. 6(b) plots the propagated far-field di-
rectivity based on an N = 1 degree expansion. While the
expansion preserves some essential directional character-
istics, it loses other crucial details, including the distinc-
tive effects of diffraction and absorption about the seated
body and chair.

In contrast, using the full-body source dimension es-
timate Rs = 0.44 m yields N = ⌈kRs⌉ = 5 as the expan-
sion limit for the improved directivity approximation in
Fig. 6(c). Finally, Fig. 6(d) plots the far-field propagated
directivity based on an N = 34 expansion. These final
two directivities show much better agreement with the raw
data and include the locations of reduced sound levels due
to diffraction about the body. The directivity factor de-
viation function levels [34] between the N = 34 degree
far-field directivity expansion and the N = 1 and N = 5
degree expansions are 1.2 dB and 0.5 dB, respectively.
From this example, it is apparent that estimating a source’s
effective dimension requires careful consideration. For
Rs = 0.44 m, spatial aliasing limits spherical-harmonic
analysis on complex-valued narrowband data beyond 4.2
kHz.

5. DISCUSSION AND CONCLUSIONS

Plotting the spherical spectrum of a source is a powerful
tool for analyzing sampling limitations and source orders.
This work’s theoretical and experimental results suggest
that an effective acoustic dimension may help characterize
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Figure 6. Narrowband female voice directivities at
500 Hz. (a) Measured FRF-based balloon. Far-field
directivities based on (b) N = 1, (c) N = 5, and (d)
N = 34 degree spherical harmonic expansions.

source order. The presented techniques allow researchers
and practitioners to estimate the required number of sam-
pling positions for a given source while highlighting limi-
tations to current sampling standards.

For the sources considered in this work, AES 5◦ dual-
equiangular sampling [14], currently the highest standard-
ized directivity resolution, is often only sufficient to al-
low spherical-harmonic-based analysis up to a few kilo-
hertz. Comprehensive, spherical-harmonic-based analy-
sis of complex-valued narrowband data over the entire
audio bandwidth would require significantly higher sam-
pling density. For example, using the effective source di-
mension of Rs = 0.44 m given in Sec. 4.2, analysis up
to 20 kHz (k ≈ 370 m−1) would require N ≈ 162 de-
gree expansions. Dual-equiangular sampling with 1◦ res-
olution and 64,082 unique positions over a sphere would
satisfy this requirement [22, 28]. However, this density
would dramatically increase the number of sampling po-
sitions used in current sampling standards and practices.

Future work could consider other methods for esti-

mating a source’s effective acoustic dimension. Efforts
that tabulate these dimensions for common sources would
benefit experimentalists in their measurement designs.
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