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ABSTRACT* 

This paper revisits the concept of active and reactive 
energies and their conservations. Conservation of active 
energy is expressed by the divergence of the stress-energy 
tensor, which is null outside sources. However, kinetic and 
potential energy are generally not equal, the difference 
being proportional to the average total curvature of the 
wave fronts: it vanishes in the case of plane waves. On the 
other hand, kinetic energy can always be diagonalized. As 
for the reactive energy, it is carried by the reactive intensity 
and a cross-energy which satisfy Maxwell’s equations; 
conservation equations can be derived for their flux, which 
generalize both Poynting’s theorem and the stress-energy 
tensor. The paper demonstrates some of these properties on 
simulated sound fields, on actual sound fields measured 
with an Ambisonics probe, and near the boundaries of an 
enclosure. An application to architectural acoustics 
simulation is also presented.. 

Keywords: energy relations, stress-energy tensor, reactive 
energy, conservation equations.  

1. INTRODUCTION 

This paper is a first step toward the derivation of a complete 
formulation for the conservation of energy in linear 
acoustics. It makes use of the conservation of the stress-
energy tensor, that is, the covariance of the stress-energy 
tensor is null in linear acoustics, as first proven by P.M. 
Morse and K.U. Ingard [1]. At stake is a novel approach to 
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sound field computation that naturally accounts for losses, 
whereas current computational methods for room acoustics 
do not, despite recent development in numerical acoustics 
such as [2]. 
Beside its derivation by Morse and Ingard [1], we know of 
only two attempts to apply this formalism to acoustics [2,4]. 
Some related ideas can be found in earlier papers from 
Stanzial [5] and Mann et al. [6] 

2. NOTATIONS 

We consider a 4-dimensional flat time-space with the 
diagonal Minkowski metric tensor ηij and the volume 
element dV=cdx0…dx3 where x0 is the time variable. The 
infinitesimal distance element is given by: 

ds2 =ηijdx
idx j                                (1) 

where only the diagonal elements of ηij are non null, with 
η00 = –c2 and ηii = 1 for i > 0. With Einstein’s summation 
notation, the wave equation is then: 

!Φ=∇iη
ij∂iΦ                                  (2) 

where ! is the Dalembertian operator, Φ is the velocity 
potential and ηij the inverse matrix of ηij. Note that ∇i is the 
covariant derivation with respect to xi, which for the 
Minkowski metric does not differ from the usual partial 
derivation ∂i. Like ordinary differentiations, covariant 
derivations therefore commute in this specific metric. Note 
that by construction, all covariant derivatives of the 
elements of the metric tensor are null. In other words, the 
contravariant derivation ∇i is defined by:  

∇i =ηij∇ j =∇ jη
ij                              (3) 

One calls vectors tensors with one upper index, such as Xi; 
and covectors tensors with one lower index, such as 
Φi = ∂iΦ. 

3. MATHEMATICAL DERIVATIONS 
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3.1 Volume deformation 

In general, the velocity potential Φ is a complex function. 
So one can consider the product Φ*!Φ, where Φ* is the 
complex conjugate of Φ. Differentiation rules lead to: 
Φ*!Φ=Φ*∇iη

ij∂ jΦ=∇iη
ij Φ*∂ jΦ⎡⎣ ⎤⎦−∂iΦ*η

ij∂ jΦ= 0  (4) 
that is, to:  

∇iη
ij Φ*∂ jΦ⎡⎣ ⎤⎦= ∂iΦ*[ ]ηij∂ jΦ                   (5) 

As the right member of the preceding equation is real, 
separating the real and imaginary parts leads to: 

∇i η
ij Φ*∂ jΦ+Φ∂ jΦ*

2
⎡

⎣
⎢

⎤

⎦
⎥= ∂iΦ*η

ij∂ jΦ= 2L           (6) 

for the real part, where L is the Lagrangian; and for the 
imaginary part, to: 

∇i η
ij Φ*∂ jΦ−Φ∂ jΦ*

2
⎡

⎣
⎢

⎤

⎦
⎥=∇

i Φ*∂ jΦ−Φ∂ jΦ*
2

= 0       (7) 

It should be noticed that the term in brackets on the left 
hand side of Eqn. (6) can be rewritten as: 

ηij Φ*∂ jΦ+Φ∂ jΦ*
2

=ηij∂ j 1
2 Φ

2( )               (8) 

that is, as the 4-gradient of a real function. As a 
consequence, it can be assimilated to a 4-velocity Vi. Thus 
the real part of Eqn. (5) simply reduces to: 

∇iV
i = 2L                                   (9) 

meaning that the Lagrangian L amounts to a volume 
deformation (divergence of a velocity). Indeed, direct 
computation of the Lagrangian for spherical and cylindrical 
waves shows it is proportional to the average total curvature 
of the wave fronts 
In a similar fashion, the imaginary part can be assimilated to 
a "covector" potential Ai with the gauge relation: 

∇iAi = 0                                   (10) 

3.2 Stress-energy tensor conservation 

We now consider the product ∂kΦ*!Φ Once more, 
differentiation rules lead to: 

∂kΦ*!Φ= ∂kΦ*∇iη
ij∂ jΦ        

=∇iη
ij ∂kΦ*∂ jΦ⎡⎣ ⎤⎦− ∇i∂kΦ*[ ]ηij∂ jΦ

=∇iη
ij ∂kΦ*∂ jΦ⎡⎣ ⎤⎦− ∇k∂iΦ*[ ]ηij∂ jΦ

=∇ j ∂kΦ*∂ jΦ⎡⎣ ⎤⎦− ∇k∂iΦ*[ ]ηij∂ jΦ= 0
       (11) 

As i and j are mute indices, separating the real and 
imaginary parts of the preceding equation leads to: 

• for the real part:   
∇ j ∂ jΦ*∂kΦ+∂ jΦ∂kΦ*⎡⎣ ⎤⎦=∇k ∂iΦ*η

ij∂ jΦ⎡⎣ ⎤⎦    (12) 

that is, to: 

∇iTij = 0                                  (13) 
where Tij is the symmetrical stress-energy tensor, 
defined by:  

Tij =
∂iΦ*∂ jΦ+∂iΦ∂ jΦ*

2
−
1
2
ηij ∂kΦ*η

kl∂lΦ( )    (14) 

• for the imaginary part: 
∇ j ∂ jΦ*∂kΦ−∂ jΦ∂kΦ*⎡⎣ ⎤⎦

= ∇k∂iΦ*[ ]ηij∂ jΦ− ∇k∂iΦ[ ]ηij∂ jΦ*
= −4π i jk

    (15) 

The convector jk can be assimilated to a 4-current, 
as will become evident in next Section.   

It is easy to recognise that the equation for the real part 
corresponds to the contravariant conservation of the stress-
energy tensor. In acoustics, the different coefficients of the 
stress-energy tensor can be interpreted as [1]:  

• the total energy density T00;  
• the active acoustic intensity I, proportional to Ta0 

and T0a, where a takes the values 1, 2 or 3:  
Ta0 = T0a = −cIa                               (16) 

• the symmetrical wave-stress tensor Tab, where a 
and b take the values 1, 2 or 3.   

Conservation of the stress-energy tensor Tij therefore 
amounts to the conservation of active energy.  

3.3 Maxwell’s equations 

On the other hand, let us introduce the antisymmetric tensor 
Fij defined by:  

Fij =∇iAj −∇ jAi = −Fji                      (17) 

In other words, Fij is the external differential form (curl) of 
the covector potential Ai. Simple derivations lead to:  

∇iAj =∇i
Φ*∂ jΦ−Φ∂ jΦ*

2
=
1
2i

∂iΦ*∂ jΦ+Φ*∇i∂ jΦ−∂iΦ∂ jΦ*−Φ∇i∂ jΦ*( )
 (18) 

∇ jAi =
1
2i

−∂ jΦ*∂ jΦ+Φ*∇ j∂iΦ+∂ jΦ∂iΦ*−Φ∇ j∂iΦ*( )  (19) 

and by subtracting the two equations, to: 

Fij =∇iAj −∇ jAi =
∂iΦ*∂ jΦ−∂ jΦ*∂iΦ

2i
           (20) 

Due to its definition, Fij naturally satisfies the Maxwell 
equations: 

∇iFij = −2π j j
∇[kFij ] =∇kFij +∇iFjk +∇ jFki = 0

                 (21) 

where the square brackets indicate sum over all cyclic 
permutations, that is, anti-symmetrization. The first 
equation is nothing else but Eqn. (15), and leads to 
assimilate the convector jk to a 4-current. The second 
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equation simply derives from the definition of tensor Fij and 
the commutative property of covariant derivations. Indeed:  

∇[kFij ] =∇k ∇iAj −∇ jAi⎡⎣ ⎤⎦+∇i ∇ jAk −∇kAj
⎡⎣ ⎤⎦

+∇ j ∇kAi −∇iAk[ ] = 0
       (22) 

Note that the first Eqn. (21) implies current conservation. 
Indeed, form the definition of ji:  

ji =
∇i∂kΦη

kl∂lΦ*−∇i∂kΦ*η
kl∂lΦ

4π i
=
1
4π

ℑ ∇i∂kΦ[ ]ηkl∂lΦ*{ }
               (23) 

we obtain:  

∇i ji =∇ jη
ji ∇i∂kΦη

kl∂lΦ*−∇i∂kΦ*η
kl∂lΦ

4π i
=
1
4π i

∇ jη
ji∇i∂kΦη

kl∂lΦ*+∇i∂kΦη
klηij∇ j∂lΦ*⎡⎣ ⎤⎦

−
1
4π i

∇ jη
ji∇i∂kΦ*η

kl∂lΦ+∇i∂kΦ*η
klηij∇ j∂lΦ⎡⎣ ⎤⎦

=
1
4π i

∇ jη
ji∇i∂kΦη

kl∂lΦ*−∇ jη
ji∇i∂kΦ*η

kl∂lΦ⎡⎣ ⎤⎦

=
1
4π i

∇ jη
ji∇k∂iΦη

kl∂lΦ*−∇ jη
ji∇k∂iΦ*η

kl∂lΦ⎡⎣ ⎤⎦

  (24) 

The commutation relations for covariant derivatives leads 
to: 

  ∇ j∇kη
ji∂iΦ=∇k ∇iη

ji∂iΦ⎡⎣ ⎤⎦                 (25) 

where we recognize in the right hand side the generalized 
wave equation Eqn. (2). The term is therefore equal to 0. 
Thus:  

∇ jη
ji∇k∂iΦη

kl∂lΦ*=∇ jη
ji∇k∂iΦ*η

kl∂lΦ= 0       (26) 
and Eqn. (24) becomes:  

∇i ji = 0                                  (27) 
There remains to interpret the antisymmetric tensor Fij in 
acoustical terms. By comparison with the stress-energy 
tensor, it is obvious that Fa0 = –F0a, where a takes the values 
1, 2 or 3, is the reactive acoustic intensity covector Qi. 
Therefore, by analogy, we call the terms Fab = –Fba, where 
a and b take the values 1, 2 or 3, the reactive wave stress. 
We then retrieve the usual form of Maxwell’s equations by 
introducing a reactive stress covector Bi, defined by: 

Ba = Fbc                                  (28) 
where a, b and c respectively take the value 1, 2 and 3 and 
their cyclic permutations. With these notations, the 
Maxwell equations Eqn. (20) take their usual form:  

∇iQi + 2π j0 = 0 ∇0Qa +Curl B( )a + 2π ja = 0
∇iBi = 0 ∇0Ba +Curl Q( )a = 0

      (29) 

3.4 Conservation of reactive energy 

By analogy with electromagnetic waves, the stress-energy 
tensor for the reactive energy can be written as [5]: 

T̂ij = FikFjlη
kl −

1
4
ηijFklFmnη

kmη ln
⎡

⎣⎢
⎤

⎦⎥
                 (30) 

In term of reactive intensity and stress, we obtain: 

T̂00 =
c2

2
Q2 + B2⎡⎣ ⎤⎦

T̂0a = cSa = T̂a0,  a =1,2,3   with   S = Q∧B
T̂ab = − QaQb + BaBb( )+ 1

2
Q2 + B2⎡⎣ ⎤⎦δab

        (31) 

where δab is the Kronecker symbol and S the Pointing 
vector, and with the conservation law: 

∇iT̂ij = Fjk j
k                                  (32) 

3.5 In summary 

We have proven that, if Φ is a velocity potential 
satisfying the wave equation: 

• the associated Lagrangian (Eqn. 6) is the 
divergence of some 4-vector Vi, as is well 
known from theory [8]; 

• the associated stress-energy tensor (Eqn. 14) is 
conserved (vanishing divergence, Eqn. 13); 

• the imaginary parts of the intensity and wave-
stress tensor satisfy Maxwell’s equations (Eqn. 
20 and 29), and build a reactive stress-energy 
tensor (Eqn. 31). 

To the best of our knowledge, the last result is new. 

4. SOME PRELIMINARY EXAMPLES 

We are presently adapting OpenMIDAS, the Matlab 
version of the MIDAS software package [9,10], to the 
processing of the 4 channels of Ambisonics microphones. 
Therefore, the results presented here are preliminary and do 
not cover all aspects of the theory yet. 
Note that Ambisonics measurements can only deliver 
information about the structure of the stress-energy tensor. 
Verifying its conservation needs specific probes that we 
have already designed [11]. There remain to calibrate them 
and develop the specific measurement procedure. 

4.1 FVTD simulation of a hallway 

Fig. 1 presents the hallway that Meacham et al. [12] 
simulated with a Finite Volume Time Difference numerical 
scheme [2]. It includes many lateral alcoves that diffuse 
sound. The scheme incorporates by design the conservation 
of energy, that is, it intrinsically satisfies Eqn. (13) for the 
first coordinate. We have derived the numerical equivalents 
for the conservation of intensity (last three coordinates), but 
have not implemented it in the scheme yet. 
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Figure 1. The hallway at Institut D’Alembert, Paris. 

Fig. 2 presents broad-band simulation results for the 
stress-energy tensor, defined by Eqn. (14), obtained in 
one “passage” where the hallways narrows, as can be 
seen in Fig. 1. The three major peaks in energy 
correspond resp. to the direct sound and two reflected 
waves at the ends of the hallway. As expected, the sound 
intensity T01 along the length of the hallway changes sign 
at each reflections. 

	

Figure 2. Components of the stress-energy tensor 
computed in the hallway (from [12]). 

The relative agreement between T00 and T11 implies that 
most of the energy density in the hallway is driven by 
the longitudinal component along x1. To the contrary, the 
T22 and T33 terms, resp. transversal and vertical 
components, are also grouped fairly closely, and for the 

most part, oppose the motion of the energy density. This 
implies that kinetic energy dominates. As a consequence, 
the Lagrangian L is strictly positive, indicating that 
diffraction takes place in the hallways. Indeed, the 
Lagrangian of cylindrical or spherical waves are strictly 
positive (see Sect. 3.1). 
All of the off-diagonal terms of the wave-stress tensor 
Tab are non-zero, but are nonetheless much smaller in 
magnitude than the diagonal terms. There remains to 
diagonalize the wave-stress tensor, which was not 
attempted in [12].  
We observed other patterns in other sections of the 
hallway, especially in the lateral alcoves where the T22 
and T33 terms become positive, indicating a dominating 
potential energy. No satisfactory explanation for it has 
been found so far.  
We hope to soon correlate simulation with 
measurements in the same hallway. 

4.2 Measurements in front of scattering surfaces 

In 2017, we carried out absorption and scattering 
measurements [11] on wall elements at the Experimental 
Media and Performing Arts Center (EMPAC) of the 
Rensselaer Polytechnic Institute (Troy, NY, US).  

	

Figure 3. Scattering wall at EMPAC. 

Fig. 3 presents the setup, with an Ambisonic microphone 
located very close to the wall. The source was located, 
either within the room on the normal to the wall at the 
position of the microphone; or close to the wall for 
measurements at grazing incidence. 
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Fig. 4 presents the T00 and T01 terms of the stress-energy 
tensor when sound impinges on the surface at normal 
incidence along x1 (source within the room).  
 

	

Figure 4. Scattering wall at EMPAC. 
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Figure 5. Scattering wall at EMPAC. 
One sees in Fig. 4 that the active sound intensity T01 is 
smaller than the total energy T00 at all frequencies, as is 
expected since their ratio is equal to sound absorption, 
always smaller than 1. In the present case, the ration is 
much smaller than 1, except at very low frequencies 
where there is no signal, in accordance with a scattering 
surface of low absorption. 

Fig. 5 presents the T02 and T12 terms of the stress-energy 
tensor when sound impinges on the surface at grazing 
incidence along x2 (source close to the wall). It also 
presents the grazing reactive intensity Q2. 
One sees in Fig. 5 that the grazing sound intensity T02 is 
larger than both the T12 component of the wave-stress 
tensor and the grazing reactive intensity Q2, except at 
some single frequencies. On the other hand, the reactive 
intensity has the same magnitude as T12, indicating the 
persistence of a reactive field. More measurements are 
needed to understand this reactive field. 

4.3 Direct computation of stress-energy tensor 

The stress-energy tensor formalism has already been used 
to describe specific sound fields. In [4], direct computation 
of its components was achieved under supplementary 
hypotheses, similar to the constitutional laws of continuum 
mechanics. The corresponding boundary conditions include 
absorption linking total energy and intensity, and a new 
boundary condition that redistribute intensity in different 
directions (scattering).  
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Figure 6. Comparison of model with time (a) and 
space (b) decays for an open-space office (from [4]).  
Fig. 6 presents a comparison of the model with actual 
decay measurements in a large open-space office. The 
time decay is calculated and measured for an 
Ambisonics receiver located at 4 m from the 
omnidirectional dodecahedral sound source (pressure 
signals only). With adapted values of absorption and 
scattering coefficients, the agreement is rather correct, 
except that the model does not properly reproduce the 
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early sound within the first 100 ms of the time decay. On 
the other hand, the space decay is correctly predicted. 
Presently, the challenge concerns the prediction and 
measurement of scattering coefficient, which remains an 
ongoing project (see Sect. 4.2). 

5. CONCLUSION 

The present paper is a first attempt to present a 
comprehensive view of energy relationships in enclosures. 
Beyond a complete and detailed derivation of the stress-
energy tensor, that sums up most of the energetic quantities 
associated with a sound field, it presents partial analysis of 
simulations and measurements that illustrate the structure of 
the stress-energy tensor. There remains to experimentally 
verify the conservation of the stress-energy tensor, and 
predict scattering coefficients for direct computation of 
stress-energy tensors, which needs further developments.  
More experimental results will be presented at the 
conference when the upgrading of OpenMIDAS is 
complete, based on the many Ambisonics measurements of 
concert halls that the author has collected over the years. 
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