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VISCOTHERMAL EFFECTS IN DUCTS AT AUDIBLE FREQUENCIES.
APPLICATION TO WIND MUSICAL INSTRUMENTS
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ABSTRACT

Viscous and thermal effects occur during the propagation
of linear waves in a pipe. Many propagation models are
used in musical acoustics, based on different assumptions
that induce various model errors. The thermoviscous (or
viscothermal) equations are derived from the non-linear
3D Navier-Stokes (NS) equations for a perfect gas by lin-
earization around a uniform steady state. Analytical or nu-
merical solutions can be proposed, after more or less deep
modifications of the original system. These derived mod-
els will be summarized in a synthetic diagram specifying
the assumptions performed for each one. Far from the
walls, a standard 3D Helmholtz equation is valid while an
effective boundary condition can replace the viscothermal
”boundary layers” near the walls of the pipe. Available
1D models describe the propagation of the mean pressure
on a well chosen surface and account for thermoviscous
effects as a modification of the transmission line coeffi-
cients, for cylindrical and conical geometries. This work
proposes an evaluation of some of these models (3D and
1D), through a quantitative estimation of model errors in
relation to their domains of validity, as well as a numerical
comparison for cylindrical and conical domains of propa-
gation.
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1. MODELS : GROUNDING HYPOTHESES AND
VALIDITY RANGE

This work reviews thermal and viscous effects on linear
wave propagation inside a pipe. It aims at understand-
ing the ground on which are built many dissipative prop-
agating wave models found in the musical acoustics lit-
erature, in order to quantify, as much as possible, the
underlying assumptions and model errors which are per-
formed. Details can be found in [1]. All the derived mod-
els are reviewed in Fig. 1 where a global sketch of the
underlying hypotheses is proposed (see Tab. 1 for a def-
inition of the coefficients and unknowns). The Navier-
Stokes (NS) equations, which are nonlinear and expressed
in the 3 dimensions of space, are the starting point of
all models. Thermoviscous (or viscothermal) equations
are derived from NS equations mainly after linearization
and assumptions on the gas state equation, see [2]. An-
alytical or numerical solutions to these equations can be
proposed, after modifying more of less the original sys-
tem, [3–6]. It is known that the thermal and viscous effects
are mainly confined near the boundaries of the pipe, in
regions called ”boundary layers”, whose thicknesses de-
pend on the physical coefficients and the frequency of os-
cillation. These thermal and viscous effects can therefore
be neglected far from the boundaries (where a standard
3D Helmholtz wave equation holds), and replaced with
either an effective boundary condition near the bound-
aries, or variable coefficients in the Helmholtz wave equa-
tion. These procedures can lead to 3D models, describing
the propagation of the pressure field in all the domain or
only a part of it [7–11] ; or 1D models, describing the
propagation of the mean pressure across a pipe section:
the most used model is the Zwikker-Kosten (Z-K) model
[12–17]. Another 1D model called Webster–Lokshin (W-
L) is obtained from derived 3D effective boundary condi-
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Figure 1. Derivation of some models for dissipative air columns of wind musical instruments with radius R
and pulsation ω = 2πf . The physical coefficients are defined in Tab. 1. The unknowns are the temperature T ,
the pressure p, the acoustic velocity v, and the viscous and thermal potentials Ψv and Ψh for the SNLS model
(bottom left).

tions, and describes the propagation of the pressure near
the boundary layer [18]. These models are derived in the
frequency domain. Note that in the time domain, they give
rise to non-rational, non-local operators such as fractional
derivatives. The use of auxiliary variables can lead to ap-
proximations which are local in time [19–22], but this is
not covered here. These 1D models can also be extended
to conical pipes [23–25]. All 1D models can be formu-
lated in the same form (1) of telegrapher’s equations in
the frequency domain, where the expression of the lineic
impedance Zv and the shunt admittance Yt adapts to the
corresponding model. The acoustic pressure p̂ and the

acoustic volume flow Û are related by

dp̂

dx
+ Zv(ω, x)Û = 0,

dÛ

dx
+ Yt(ω, x)p̂ = 0 (1)

where the definition of the spatial coordinate x depends on
the model (axisymmetric axis, boundary curvilinear coor-
dinate...)

From this extensive review and analysis of the mod-
els’ hypotheses, their associated domains of validity are
summed up in Fig. 2 in relation to the dimensionless
shear number s = R

√
ρ0ω/µ and reduced frequency k

= Rω/c0, where ω = 2πf is the angular frequency, R
the radius of the pipe, and ρ0 and µ are defined in Tab. 1.
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Note that all the 1D models assume k ≪ 1, i.e. that the
tube radius is much smaller than the wavelength, and some
models additionally assume s ≫ 1, i.e. that the tube ra-
dius is much greater than the boundary layer thickness.
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Figure 2. Expected domains of validity of the vari-
ous models. The filled rectangle represents the range
of pipe radii and frequencies of interest in musical
acoustics. Curves of constant shear number s =
R
√
ρ0ω/µ and reduced frequency k = Rω/c0 are

displayed. The dotted region is where model (Z-
K) [13] is expected to be valid, according to the hy-
potheses made (k ≪ 1). Similarly, (W-L) [18] and
Keefe [14] models should give accurate results in the
horizontally hatched region ( k ≪ 1 and s ≫ 1). The
3D models with effective boundary conditions [7,10]
should be valid in the region with diagonal hatches.
Sequential Linearized Navier Stokes model of [6]
only assumes k/s ≪ 1 hence is valid on the whole
region.

2. QUANTITATIVE ASSESSMENT OF THE
MODELS

An assessment of some of these 3D and 1D models allows
to estimate quantitatively the model errors with respect to
their domains of validity, and to compare between models
for simple geometries.

2.1 Error on the complex wavenumber

Figure 3. Relative error on the wavenumber, for
models (Z-K), Keefe and (W-L), comparing them to
the exact result of [12]. The black rectangle repre-
sents the range of pipe radii and frequencies of inter-
est in musical acoustics.

First, the complex wavenumber of the different mod-
els are compared. For models of the form (1) the
wavenumber is given by Γ =

√
ZvYt. In Fig. 3 are dis-

played the relative errors on the wavenumber computed
from three different models in a cylinder : (Z-K) from
[13], Keefe from [14] and (W-L) from [18], with respect
to the exact one of [12]. Surprisingly, (Z-K) remains valid
for high k, and the error depends mostly on the ratio k/s.
Since Keefe is a large-s approximation of (Z-K), it be-
comes invalid at low frequencies and pipe radii. As noted
in [1], (W-L) can be interpreted as a large-s approximation
of lower order than Keefe, thus leading to significant error
at low frequencies and pipe radii. The V shape of the the-
oretical domains of validity of (W-L) and Keefe displayed
in Fig. 2 is well recovered quantitatively in Fig. 3. An im-
portant observation is the quantitative value of these rela-
tive errors in the musical acoustics range in interest (black
rectangle). It is smaller than 10−4 for (Z-K), but can ex-
ceed 10−1 with Keefe and (W-L) models when s is small.

2.2 Error on the input impedance

Second, numerical simulations will be presented and com-
pared on canonical geometries with identical boundary
conditions, so that the observed difference can only be
attributed to the propagation and viscothermal model in-
side the pipe. The compared 3D models are based on
the Helmholtz equation inside the domain, using at the
wall the effective boundary conditions of [7] (Cremer BC)
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Figure 4. Input impedance of the considered per-
fectly open cylindrical geometry. The chosen fre-
quencies of interest are marked with a black cross.

and of [10] (Cremer Angle BC). The reference solution
is computed following the sequential procedure SLNS of
[6]. The compared 1D models are (Z-K) from [13], Keefe
from [14], (W-L) from [18], and (S-H) or its approxima-
tion (H-R) from [24]. The 3D models are implemented in
the opensource finite element library Montjoie [26] while
the 1D models are implemented in the opensource library
OpenWind [27]. The quantity used to compare the dif-
ferent simulations on a given pipe geometry is the input
impedance, defined as the ratio of the fluid pressure and
the volume flow through the input surface, which is a com-
mon quantity of interest in musical acoustics and can be
measured experimentally [28, 29]. In the models which
only compute the pressure, a correction factor is required
to obtain a physically correct value of the volume flow,
based on the viscous potential Ψv . Therefore an accurate
quadrature formula must be used to finely compare 3D
and 1D models, taking into account the possible curvature
of the input surface. The discretisation error is controlled
in the simulations [30], so that the computed difference
can be attributed to the model and not to the numerical
methods.

Comparisons are performed first for a cylinder of ra-
dius 4 mm and length 200 mm, with a simplified open
condition (p = 0 at the end), at a temperature of 20◦C , at
different frequencies marked in Fig. 4 with black crosses
on the graph of the corresponding input impedance. Fig. 5
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Figure 5. Relative error on the input impedance, for
models Cremer BC, Cremer Angle BC, (Z-K), Keefe
and (W-L), comparing them to the reference result
of [6], on the cylindrical geometry.

shows the relative error on the input impedance, with re-
spect to the reference solution obtained using the SLNS
procedure of [6]. For this case, the shear number s ranges
from 44 to 82 while the reduced frequency k ranges from
0.03 to 0.07. The relative model errors follow the trends
predicted by model analysis. (Cremer BC) is less accu-
rate than (Cremer Angle BC) which does not presume the
angle of wavefronts with the wall. (W-L) is based on the
wall impedance of (Cremer BC), indeed it is observed that
both models exhibit very close error values. (Z-K) is the
most accurate model, which was to be expected for the
case of a cylinder. Keefe appears to be a good approxi-
mation of it, especially as the frequency (hence the shear
number s) increases.

Then, comparisons are performed on a cone of input
radius 4.95 mm, output radius 24.60 mm and length 61.60
mm, with a simplified open condition (p = 0 at the end), at
a temperature of 20◦C, at different frequencies marked in
Fig. 6 with black crosses on the graph of the correspond-
ing input impedance. Fig. 7 shows the relative error on
the input impedance, with respect to the reference solution
obtained using the SLNS procedure of [6]. For this case,
the shear number s ranges from 143 to 1007 while the
reduced frequency k ranges from 0.18 to 1.80. This ge-
ometry violates the underlying hypotheses of all 1D mod-
els from the simple fact that the radius R varies along the
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duct, except the model (S-H) based on special functions
(Legendre functions of complex order), and its approxi-
mation (H-R) which is an extension of (Z-K) where the
effective radius for the losses coefficients is taken as the
hydraulic radius, see [24]. To mitigate this effect, 1D com-
putations are done using a spherical wavefront hypothesis,
which is implemented as a correction of the equation coef-
ficients, see [1]. The fact that the shear number is high for
this case favors the 3D (Cremer Angle BC) model, which
indeed shows small errors. The 3D (Cremer BC) model
improves as the frequency increases but deteriorates at low
frequencies, probably due to the erroneous presumption
on the wavefronts curvatures. The 1D models (Z-K) and
Keefe provide very close errors, in accordance with the
fact that the shear number s is very large. Model (W-L)
however cumulates the errors of (Cremer BC) and of the
1D approximation, hence displaying large errors at all fre-
quencies. Finally, the 1D (S-H) and (H-R) models are the
most precise ones, which was to be expected since they
are designed for conical geometries. Note that the last
point is missing for (S-H), due to difficulties to evaluate
the special functions at large frequencies.
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Figure 6. Input impedance of the considered per-
fectly open conical geometry. The chosen frequen-
cies of interest are marked with a black cross.
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Figure 7. Relative error on the input impedance, for
models (Z-K), Keefe and (W-L), comparing them to
the reference result of [6], on the conical geometry.

3. CONCLUSIONS

An evaluation of several viscothermal 3D and 1D models
in ducts was performed through an estimation of model er-
rors in relation to their domains of validity. A quantitative
comparison was performed on the complex wavenumber
in a cylindrical geometry, and on the input impedance of
a cylinder and a cone. Quantitative results corroborate
qualitative predictions: it is justified to expect the model
errors to decrease as the underlying assumptions of the
corresponding models are respected. For most 1D mod-
els, this should be the case as the reduced frequency k is
small, which occurs in thin pipes at low frequencies. For
approximate 1D models as (W-L) and Keefe, the range of
validity is reduced since their dissipative terms are based
on the additional hypothesis that the shear number s is
large. For 3D models (Cremer BC) and (Cremer Angle
BC), their validity improves as the shear number s is large,
which occurs in wide pipes at high frequencies. On more
realistic geometries, the dimension reduction to 1D im-
pairs the propagation effects more than the viscothermal
effects, hence the comparison is dominated by the propa-
gation model error. Further research could aim at com-
bining improved propagation computations, for instance
using the multimodal method [31], with a viscothermal
model reduction.
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Name Symbol Formula Typical values Unit
Static pressure p0 101.3 kPa
Static temperature T0 293.15 K
Static density ρ0 1.2 kg · m−1

Sound velocity c0
√
γp0/ρ0 343.4 m · s−1

Shear viscosity µ 1.81× 10−5 kg · m−1 · s−1

Bulk viscosity ζ 1.3× 10−5 kg · m−1 · s−1

Thermal conductivity κ 2.57× 10−2 J · m−1 · s−1 K−1

Specific heat w/ constant pressure Cp 1004 J · kg−1 · K−1

Heat capacity ratio γ 1.402 no unit
Frequency f 20 to 20 ×103 Hz
Angular frequency ω 2πf 102 to 105 rad · s−1

Radius R 10−3 to 10−1 m
Wavelength λ c0/f 2 ×10−2 to 20 m
Reduced frequency k Rω/c0 3 ×10−4 to.30 no unit
Shear wave number s R

√
ρ0ω/µ 3 to 8000 no unit

Table 1. Notations used in this paper, from [24], for a temperature of 20◦C.
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