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ABSTRACT* 

This paper presents experimental and numerical active 
vibration control of a nonlinear system for eigenvalue 
assignment and active damping, using receptance method. A 
nonlinear electromagnetic setup consist of two identical 
coils, magnets and a cantilever beam has been designed and 
built for this purpose. By varying electrical current and 
distance between the two coils, nonlinear cubic stiffness with 
various strengths obtained. Active damping control 
performed experimentally in order to validate the 
performance of control method on the designed nonlinear 
setup.  
For eigenvalue assignment, first, receptance of the open loop 
system is experimentally measured by varying electrical 
currents and the coil distance to define the effect of parameter 
variations on the system's FRF. Next step involved 
developing an iterative Sherman-Morrison formula to obtain 
the feedback control gains for the eigenvalue assignment. 
This step was challenging due to the amplitude dependence 
and also instability and jump phenomena that exist in the 
nonlinear FRFs. Increasing excitation level causes strong 
nonlinear effects in closed loop receptance, as shown by 
simulation.  
In the end, a stability analysis is conducted and discussed to 
prevent instability during the eigenvalue assignment process. 
Considered method effectively assigned poles and ensured 
the stability of the system under different conditions. 
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1. INTRODUCTION 

This is not practical to assume that all systems can be 
represented by linear models in their mathematical 
description, as engineering systems often demonstrate 
nonlinear characteristics to some extent [1]. The behavior of 
nonlinear systems can be described by nonlinear differential 
equations where the principle of superposition is not 
applicable. Various forms of nonlinearities such as cubic 
stiffness, coulomb damping, piecewise stiffness, and 
friction-controlled backlash can be found in nonlinear 
systems [2-4]. Due to the dependence of nonlinear setups' 
behavior on the amplitude of the input signal, linear concepts 
such as linear control strategies, frequency response 
functions, and Nyquist stability analysis are not applicable to 
nonlinear structures [5], Thus, in order to define these 
systems, describing function method can be used. This 
method determines the ratio of amplitudes and phase angle 
between the fundamental harmonic components of the input 
and output sinusoid [6] and it is helpful in analyzing the 
stability of the nonlinear system [7]. 
Active control is a technique that involves applying external 
force to regulate the response of a structure, and is effective 
at suppressing vibrations, adapts to different conditions and 
has a wide range of applications. [9].The design of control 
systems is crucial for active control, which involves using 
sensor information to drive actuators. Inertial actuators can 
use velocity feedback, allowing the actuator to behave like 
an attached mass and reduce vibration [8], [10], and [11]. 
Active damping control is a technique that uses data on 
accelerations or forces to influence the dynamic response of 
mechanical structures. It is particularly effective for 
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preventing resonance in systems with loads that change over 
time and have frequencies close to the natural frequencies of 
the structure. [11]. 
Relocating the eigenvalues of a nonlinear system is another 
challenging aim for vibration control because of  the 
following reasons. Firstly, nonlinear systems often have an 
endless number of poles in response to harmonic input, also, 
controlling and stabilizing nonlinear systems is more 
complex due to bifurcation, chaos, limit-cycle oscillations, 
and jump effects. Finally, mathematical models of nonlinear 
structures are more complex, and in some cases, numerical 
methods are necessary for eigenvalue assignment. 
Ram and Mottershead [12] developed the Sherman-
Morrison receptance technique for linear systems, in which 
the system's eigenvalues assign based on measured 
receptances instead of modeling the mass, damping, and 
stiffness matrices. This approach offers advantages over 
traditional state-space methods. In this technique poles and 
zeros of the system can be determined without evaluating the 
system's dynamics characteristics, there is no need to 
estimate unmeasured states using an observer or to use model 
reduction. Also the receptance method is applicable to any 
input-output measured data [13]. 
In this paper the receptance method has been extended in 
order to control the poles of a cantilever beam subject to 
nonlinear electromagnetic field [14]. First an experimental 
setup has been designed and the mathematical model of the 
electromagnetic beam has been extracted, then hammer test 
has been performed and the impact of increasing the electric 
current and the distance between the coils and magnets on 
the nonlinearity of the system has been shown 
experimentally. In the further step, active damping theory 
and the receptance method and iterative solution has been 
investigated on the linear and nonlinear electromagnetic 
system in order to perform pole placement. 

2. MATHEMATICAL MODEL OF THE 
EXPERIMENTAL SETUP 

The experimental setup designed for this study consists of a 
cantilever beam, with its free end connected to a pair of 
identical magnets. Additionally, a pair of identical coils is 
mounted next to the magnets to create a magnetic field and 
having access to nonlinear stiffness with creating cubic 
stiffness for the system. The advantage of the designed setup 
is that it allows for variation in the strength of the nonlinear 
stiffness by adjusting the distance between the two coils and 
the electrical current passing through them. In addition, the 
electromagnetic part of the setup can be moved along the 
length of the beam, allowing for the measurement of the 

hammer test on the beam at various points along its length. 
Fig. 1 shows the designed setup used in this study, which 
allows for the measurement of various parameters related to 
the behavior of the cantilever beam with nonlinear stiffness. 

 
Figure 1. Nonlinear designed setup consists of 

cantilever beam, a pair of identical coils and 
magnets, a load speaker, and an accelerometer. 

The pair of Mundorf copper coils used in this setup are of 
type L71-3,30, with a maximum current rating of 3 Amp 
based on their datasheet, and the disc magnets are 
neodymium (type F359, N42). In order to derive a 
mathematical model of the system, the equation of motion 
for a general linear system can be considered as Eqn. (1), in 
which the linear mass, damping, and stiffness terms are 
respectively described by m, c, and k1, and an excitation 
force is assumed to be represented by p(t). Since aim of this 
study is to control the only one mode of the beam, the model 
is considered to be single degree-of-freedom for simplicity. 
However, multi degree-of-freedom will be considered in 
future work. Eqn. (1) shows mathematical model of an 
electromagnetic cantilever beam. 

𝑚�̈�(𝑡) + 𝑐�̇�(𝑡) + 𝑘1𝑦(𝑡) +
𝑑𝑈(𝑦)

𝑑𝑦
= 𝑝(𝑡) (1) 

Term of U(y) in Eqn. (1) shows the potential energy of the 

electromechanical system, and the part of 
dU(y)

dy
 is a function 

of the electrical current (Ic), parameters of the coils and 
magnets as defined by Eqn. (2). 

𝑑𝑈(𝑦)

𝑑𝑦
= 𝐻𝑐1𝐼𝑐𝑦 + 𝐻𝑐2𝐼𝑐𝑦

3 (2) 

It is possible to calculate Hc1 and Hc2, as mentioned in Eqn. 
(2), using the Eqn. (3) as described in [14]. 

𝐻𝑐1 = (
−2(

3
2
𝜇𝜇0𝑟𝑐

2𝑁)

(𝑟𝑐
2 + ℎ2)

5
2

+
10(

3
2
𝜇𝜇0𝑟𝑐

2𝑁)ℎ2

(𝑟𝑐
2 + ℎ2)

7
2

) (3) 
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𝐻𝑐2 = (
5(
3
2
𝜇𝜇0𝑟𝑐

2𝑁)

(𝑟𝑐
2 + ℎ2)

7
2

−
70(

3
2
𝜇𝜇0𝑟𝑐

2𝑁)ℎ2

(𝑟𝑐
2 + ℎ2)

9
2

+
105(

3
2
𝜇𝜇0𝑟𝑐

2𝑁)ℎ4

(𝑟𝑐
2 + ℎ2)

11
2

) 

The parameters in Eqn. (3) are introduced in the table 1. Eqn. 
(4) can be used to represent the linear and nonlinear 
equivalent stiffness of the system by utilizing the information 
provided in Eqn. (2) and (3). 

𝑘𝑙𝑖𝑛𝑒𝑎𝑟 = 𝑘1 + 𝐻𝑐1𝐼𝑐  
(4) 

𝑘𝑁𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 = 𝐻𝑐2𝐼𝑐  

Eqn. (5) can be used to express the describing function of the 
aforementioned system. 

𝐺𝐷(𝐼𝑐 , 𝑦) = 𝐻𝑐2𝐼𝑐𝑦
3 (5) 

By separating linear and nonlinear stiffness, the equation of 
motion in Eqn. (1) can be rewritten as Eqn. (6). 
𝑚�̈�(𝑡) + 𝑐�̇�(𝑡) + 𝑘𝑙𝑖𝑛𝑒𝑎𝑟𝑦(𝑡) + 𝑘𝑁𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟𝑦

3

= 𝑝(𝑡) 
(6) 

This equation represents an open-loop Duffing oscillator 
expression with cubic stiffness in the time domain. Tab. 1 
displays the mechanical properties of the designed system  
and the numerical values used for the simulation study [14]. 

Table. 1 Mechanical properties of designed setup [14] 
Property Value Units 
Young’s Modulus of the Beam  70 GPa 
Area moment of inertia Im 66 × 10−12 m4 
Mass of Beam mb 0.034 Kg 
Length, Width, Thickness of 
Beam lb, bb, tb 

0.54,0.01, 0. m 

Mean Radius of Coils rc 0.0155 m 
Magnetic Dipole Moment μ 3.08 Am2 
Permeability of Free Space μ0 4π × 10−7 NA−2 
Number of Turns in Coils N 485  
Total Mass m 0.104 Kg 
Static Stiffness klinear 32.84 Nm−1 

3. RECEPTANCE METHOD FOR ACTIVE 
DAMPING AND POLE PLACEMENT OF THE 

NONLINEAR SYSTEM 

The feedback control force of u(t) is a linear combination of 
the control gains multiplied by velocity and displacement, as 
written in Eqn. (7). 

𝑢(𝑡) = −𝑔𝑣�̇�(𝑡)− 𝑔𝑑𝑦(𝑡) (7) 
If gv and gd are defined as velocity and displacement 
feedback gains respectively, the equation for the closed-loop 

system can be obtained by adding the feedback control force  
to the open-loop system as in Eqn. (8). 
𝑚�̈�(𝑡) + 𝑐�̇�(𝑡) + 𝑘𝑙𝑖𝑛𝑒𝑎𝑟𝑦(𝑡) + 𝑘𝑁𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟𝑦

3

= 𝑝(𝑡) + 𝑢(𝑡) 
(8) 

Feedback control adds a control force to nonlinear systems 
for desired pole values and stable performance with reducing 
the vibration. This enables active damping and pole 
placement, expressed by combining Eqn. (7) and (8) as Eqn. 
(9) for precise control of system dynamics. 
𝑚�̈�(𝑡) + (𝑐 + 𝑔𝑣)�̇�(𝑡) + (𝑘𝑙𝑖𝑛𝑒𝑎𝑟 + 𝑔𝑑)𝑦(𝑡)

+ (𝑘𝑁𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟)𝑦(𝑡)
3 = 𝑝(𝑡) 

(9) 

After taking the Fourier transform of Eqn. (9),  in order to 
extract and plot displacement amplitude, harmonic balance 
method has been used with considering harmonic 
assumptions for input and output as p = Psin(ωt − φ) and 
y = Ysin(ωt) respectively.  

𝑚𝜔2𝑌𝑠𝑖𝑛(𝜔𝑡) + (𝑐)𝑌𝜔𝑐𝑜𝑠(𝜔𝑡)
+ (𝑘𝑙𝑖𝑛𝑒𝑎𝑟)𝑌𝑠𝑖𝑛(𝜔𝑡)
+ 𝑘𝑁𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟𝑌

3𝑠𝑖𝑛(𝜔𝑡)3

= 𝑃𝑠𝑖𝑛(𝜔𝑡 − 𝜑) 

(10) 

Through the equating the coefficients of cos(ωt)and 
sin(ωt) in Eqn. (10), two equations can be obtained, that 
addition of the squares of extracted equations can define as 
Eqn. (11). 

9

6
𝑘𝑁𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟
2 𝑌6 +

3

2
𝑘𝑁𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟(𝑘𝑙𝑖𝑛𝑒𝑎𝑟

− 𝑚𝜔2)𝑌4

+ [(𝑘𝑙𝑖𝑛𝑒𝑎𝑟 − 𝑚𝜔2)2

+ (𝜔(𝑐))
2
]𝑌2 − 𝑃2 = 0 

(11) 

Also in order to extract the closed-loop FRF, Eqn. (10) can 
be obtained after taking the Fourier transform of Eqn. (9), 
which is the first-order FRF, denoted as Λ1(jω, Y). 

𝛬1(𝑗𝜔,𝑌) = (−𝜔2𝑚 + 𝑗𝜔𝑐 + 𝑘𝑙𝑖𝑛𝑒𝑎𝑟

+
3

4
𝑘𝑁𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟𝑌

2)
−1

 

(12) 

Eqn. (12), describes how a nonlinear system responds to 
monoharmonic excitation. It is similar to a linear FRF with 
the difference of amplitude dependency. Consider the 
equation of motion of linear system in frequency domain 
define as Eqn. (13).  

H(s) = s2m + cs + klinear  (13) 

By adding control gains to nonlinear FRF, the first-order 
closed-loop receptance is obtained as  Eqn. (14). 

𝛬1̅̅ ̅(𝑠,𝑌) = (𝑠2𝑚 + (𝑐 + 𝑔𝑣)𝑠

+ (𝑘𝑙𝑖𝑛𝑒𝑎𝑟 + 𝑔𝑑)

+
3

4
𝑘𝑁𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟𝑌

2)
−1

 

(14) 
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By utilizing the Sherman-Morrison formula, Eqn. (15) can 
be written to define the closed-loop receptance as a function 
of the open-loop receptance and the feedback gains [17] . 

𝛬1̅̅ ̅(𝑠,𝑌)

= 𝛬1(𝑠,𝑌)−
𝛬1(𝑠,𝑌)(𝑔𝑑 + 𝑠𝑔𝑣)𝛬1(𝑠,𝑌)

1 + (𝑔𝑑 + 𝑠𝑔𝑣)𝛬1(𝑠,𝑌)
 

(15) 

The Sherman-Morrison formula can be used for extracting 
the closed-loop receptance through the use of the open-loop 
receptance and feedback gains. However, in order to perform 
active damping, the displacement gain are equal to zero. 
Fig. 2 presents a closed-loop block diagram of the active 
damping method, in which, in the case of a linear system, the 
describing function of N(s, Y) would be excluded.  

 
Figure 2. Closed loop block diagram of the active 

damping. 

Active damping counteracts the effects of inherent damping 
in any system. In contrary, for pole placement, both the 
velocity and displacement are required, which can be 
computed based on the characteristic equation of the system 
as Eqn. (16). 

(
𝑔𝑣
𝑔𝑑
) = [

𝜇1𝛬1(𝜇1,𝑌) 𝛬1(𝜇1,𝑌)

𝜇2𝛬1(𝜇2,𝑌) 𝛬1(𝜇2,𝑌)
]
−1

(
−1
−1

) 
(16) 

In Eqn. (16), μ1 and μ2 are the desired poles (eigen values) 
that we wish to assign. Fig. 3 is an illustration of a closed-
loop feedback controller in order to perform pole placement 
or eigenvalue assignment of the nonlinear system. 

 
Figure 3. Closed loop block diagram of the pole 

placement. 

To assign the desired poles of linear and nonlinear systems, 
the required control gains are obtained using a three-step 
iterative approach applied to the Sherman-Morrison 
receptance [11]. These three steps have been explained 
below. 

• Finding first- order open- loop FRF Λ1(μ1, Y), in 
this step both theory or experimental measurements 
are acceptable. 

• Estimating initial values of gv and gd by applying 
extracted Λ1(μ1, Y) from first step to Eqn. (16). 

• Adjusting closed-loop displacement amplitude 
using Eqn. (15). 

 
With having final values of control gains and adding these 
values to Eqn. (12), frequency response function of closed-
loop system can be derive based on Eqn. (17). 
9

6
𝑘𝑁𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟
2 𝑍3 +

3

2
𝑘𝑁𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟(𝑘𝑙𝑖𝑛𝑒𝑎𝑟 + 𝑔𝑑

− 𝑚𝜔2)𝑍2

+ [(𝑘𝑙𝑖𝑛𝑒𝑎𝑟 + 𝑔𝑑 − 𝑚𝜔2)2

+ (𝜔(𝑐 + 𝑔𝑣))
2
]𝑍 − 𝑃2

= 0 

(17) 

In which Z = Y2. In order to ensure the stability of explained 
method, local stability analysis has been checked in the 
following section. 

4. STABILITY ANALYSIS 

There are some methods include the nonlinear Nyquist 
criterion, phase plane trajectory approach, circle and Popov 
criteria, and Lyapunov exponents for stability analysis in 
nonlinear systems [16], that the "Nonlinear Nyquist 
Criterion" method is used to analyze a nonlinear system in 
this paper. To determine the location of closed-loop poles, it 
is necessary to define the transfer function of the closed-loop 
system in terms of the open-loop system and controller. 
Combination of the open-loop plant matrix H(s), the transfer 
function between the actuator input u(t) and the 
accelerometer outputs y(t), and the controller matrix G(s) in 
a system with single degree of freedom, create the control 
loop. The closed-loop transfer function of Λ1(s, Y) in the 
system defined as Eqn. (18): 

𝛬1(𝑠,𝑌) =(1 + 𝐺(𝑠)𝛬1(𝑠,𝑌))
−1
𝛬1(𝑠,𝑌) 

(18) 

Based on Eqn. (18) the closed-loop poles on any system can 
define by solving characteristic equation of the system as 
Eqn. (19):  

𝑑𝑒𝑡(1 + 𝐺(𝑠)𝛬1(𝑠,𝑌)) = 0 (19) 
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The Nyquist contour of G(s)Λ1(s, Y) can be used to measure 
the closed-loop system's relative stability [15].  
To check the existence of limit cycle, by combining 
describing function and Nyquist theory, Eqn. (20) can be 
used to determine the requirement for limit-cycle oscillations 
in the nonlinear system. 

1 +𝑁(𝑗𝜔.𝑌)𝐻(𝑗𝜔) = 0 𝑜𝑟 𝐻(𝑗𝜔) =
−1

𝑁(𝑗𝜔.𝑌)
 

(20) 

The intersection of the Nyquist plot and the negative inverse 
of the describing function determines if there's a limit-cycle 
oscillation. In this case, limit-cycle is stable if it goes in a 
straight line from infinity to the origin and unstable if it goes 
from the origin to infinity.

5. RESULTS 

As mentioned before in Section 2, the designed setup has the 
ability to adjust the strength of nonlinearity by varying the 
electrical current of coils and also the distance between two 
coils and magnets. To investigate the effect of the strength of 
magnetic field on the system's nonlinearity, the frequency 
response function (FRF) of the nonlinear system was plotted 
under different conditions. 
 
Open-loop characterization: 
The hammer test was conducted to experimentally measure 
the input force and output acceleration of the system. Data 
accuracy was ensured by repeating each test 20 times and 
calculating the final FRF using the averaging method to 
reduce experimental noise. Fig. 4 shows the frequency 
response function of the nonlinear system under various 
conditions of displacement between the system's coils and 
magnets and their electrical current. 

 

Figure 4. Experimental FRF of nonlinear system in 
various displacements and constant current. 

As it is obvious in Fig. 4 the FRF is similar to FRF of linear 
systems does not show any hardening or softening effect. 
The reason is that with performing hammer test, the effect of 
hardening would be canceled because of the averaging from 
final Furrier transform results. In order to observe hardening 
effect and jumping phenomenon, shaker tests will be 
perfumed in future. However in this study, in order to show 
the influence of variation of displacement and electrical 
current of coils, the experimental result has been compared 
with numerical simulation as shown in Fig. 5. 

 
Figure 5. Illustration of numerical FRF of the open 
loop system for different values of displacement, in 

a constant current of Ic = 3 Amp 

Based on Figs. 4 and 5, for fixed value of electrical current, 
with increasing the displacement between coils, system acts 
more similar to the linear system because of the small 
nonlinear stiffness. 
Also the extracted open loop FRFs for different values of 
electrical current with constant displacement have been 
plotted in Fig. 6.  

 
Figure 6. Experimental FRF of nonlinear system in 

various currents and constant displacement.   
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Also, in order to validate the experimental tests, the results 
have been compared with the numerical ones in Fig. 7. Both 
Figs. 6 and 7 illustrate that for a fixed displacement, by 
increasing the electrical current between coils, system shows 
intensive nonlinear behavior because of the large nonlinear 
stiffness. 

 
Figure 7. Numerical FRF of the nonlinear system 

for different values of electrical current, and 
constant displacement of h = 0.5 Cm. 

 

Fig. 8 shows a very good comparison on the location of the 
poles of the nonlinear designed system in two conditions of 
the weakest and strongest nonlinear stiffness. 

 

Figure 8. comparison the FRF of the nonlinear 
system in two condition of weakest and strongest 

nonlinear stiffness. 

Active damping experiment:  
To experimentally perform active damping strategy in a 
linear system, a Dayton load speaker has been connected to 
the beam. This allows for the implementation of a feedback 
control method. Fig. 9, describes the experimental result of 
performing active damping method on the linear setup with 
positive and negative gains. 

 
Figure 9. FRF of experimentally performing active 
damping method on the linear setup with positive 

and negative control gains. 

The study aimed to reduce the amplitude of the system’s 
second mode using a positive gain of 12, as shown in Fig. 
9. The Sherman-Morrison receptance method was 
iteratively applied to perform pole placement on the 
system. Nonlinear system pole placement was 
demonstrated using Simulink software with a sine wave 
input. A new set of desired closed-loop complex-
conjugate poles with values of μ1,2 =  −0.85 ± 35i are to 
be assigned. The required feedback gains are calculated 
using Eqn. (16) to be gd = 31.92 and gv= 0.0728. Fig. 10. 
Shows both control gains based on the number of 
iteration. 

 
Figure 10. Displacement and velocity control gains 

based on the number of iteration. 

The numerical result of the pole placement for this 
nonlinear system with considering sine wave as an input 
force has been presented in Fig. 11. This figure displays 
both the open-loop and closed-loop receptances which 
plotted using the iterative Sherman-Morrison receptance 
method. 

5242



10th Convention of the European Acoustics Association 
Turin, Italy • 11th – 15th September 2023 • Politecnico di Torino 

 

 

 
Figure 11. pole placement of the open-loop and 

closed-loop nonlinear system. 

Since it is not possible to plot the hardening part of nonlinear 
systems in Simulink study, thus, in order to validate the 
simulation results, the equation extracted from the harmonic 
balance method (Eqn. (17)) was solved numerically, and the 
corresponding frequency response function was plotted in 
Fig. 12. 

 
Figure 12. Numerical result of open loop FRF and 

closed loop pole placement of nonlinear system. 
 

As is obvious from both Fig. 11. and 12, the poles of the 
system have been moved to the desired position correctly. 
Additionally, Fig. 11 shows the jumping phenomenon and 
hardening effect in the considered nonlinear system. 
In order to check the existence of limit cycle and its stability, 
as mentioned in previous section, Fig. 13 shows Nyquist 
block diagram of the open loop system and negative inverse 
of describing function.  

 
Figure 13. Indirect Nyquist block diagram of the 

nonlinear system in order to check the limit cycles. 
 
Intersection between two plots shows the limit cycle exist in 
this nonlinear system. Since the limit cycle with variation of 
amplitude moves from infinity to the origin, it remains stable. 
Also Fig. 14. shows the real part of the eigenvalues of the 
closed-loop nonlinear system with variation of the amplitude 
of the system. 

 
Figure 14. Illustration of eigenvalues of the closed 

loop nonlinear system based on amplitude 
 

As it is obvious in Fig.14, the real part of the eigenvalues of 
this system in the variation of chosen amplitude are always 
negative which means that  the closed-loop system is locally 
stable. 

6. CONCOLUSION 

This paper presents the application of the receptance method 
to control the poles of a nonlinear system experimentally 
using a nonlinear electromagnetic cantilever beam that 
designed and built for this purpose. The nonlinear stiffness in 
the electromagnetic system is performed using a pair of 
identical magnets and coils. The modeled nonlinear stiffness 
can vary by adjusting the input electrical current and the 
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distance between the two coils. The experimental and 
analytical results demonstrate that by increasing the distance 
and decreasing the electric current between the two coils, the 
system behaves similarly to a linear system because the 
nonlinear magnetic field weakens. 
Active damping was performed experimentally to evaluate 
the performance of the designed control method and the used 
inertial actuator on the nonlinear setup. The poles of the 
nonlinear electromagnetic beam were analytically assigned 
for the experimental setup. To achieve this, experiments 
were conducted to analyze the system's behavior. 
The nonlinear system's poles were assigned using the linear 
feedback control method and the iterative Sherman-
Morrison formula at various levels of excitation. The jump 
phenomenon of the nonlinear FRF was shown, and pole 
placement was performed for only one mode of a single 
degree of freedom nonlinear system in this study. The 
stability investigation of the first five modes of a multi-
variable system will be studied in future works. 
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