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ABSTRACT* 

The challenges of automated driving and driver assist sys-
tems increasingly require enhanced sensing of the vehicle 
environment. Ultrasonic sensors are used in parking and 
maneuvering situations to calculate the distance to obstacles 
using the pulse-echo method. Because of their robustness, 
low production costs and widespread use, increasing the 
performance of ultrasonic sensors is of great interest. A 
signal processing pipeline and deep learning methods for 
classifying obstacles using a single ultrasonic sensor are 
presented. Time-frequency images that are forwarded to a 
convolutional neural network are extracted using the contin-
uous wavelet transform. The classification of seven object 
classes and the classification of traversability is performed 
in a semi-anechoic chamber and on an asphalt parking 
space. Promising results are achieved in classifying the 
traversability of obstacles. However, the discrimination of 
small objects can be challenging, especially on asphalt 
ground, which leads to interfering clutter reflections. 
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1. INTRODUCTION 

Automotive ultrasonic sensors are used for sensing the near 
field of vehicles, especially in parking and maneuvering 
situations. Currently, the distance to obstacles is calculated 
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based on the pulse-echo method. However, further enhance-
ment of surround sensing is crucial for automated driving 
applications and driver assist systems.  Because of their low 
production costs, robustness and widespread use, increasing 
the performance of ultrasonic sensors is of particular in-
terest [1]. Notably, a classification of obstacles is desirable. 
In general, classification tasks using automotive ultrasonic 
sensors have been poorly addressed. There has been some 
work on classifying ground types [2, 3] or obstacle height 
[4]. A more comprehensive range of studies on classifying 
acoustic echoes is available in the fields of non-destructive 
testing (NDT) [5, 6], ultrasonography [7, 8], and underwater 
sonar [9, 10]. However, in these applications, usually trans-
ducer arrays are used, allowing beamforming and imaging 
methods. For automotive sensing, low-cost ultrasonic 
sensors consisting of a single piezo-electric transducer are 
employed [1]. Therefore, different approaches are required 
to extract relevant features from the acquired signals.  
In this article, a summary of the published work in [11] 
about object classification in automotive ultrasonic sen-
sing and a discussion about related and future work are 
given. In Sec. 2, relevant features in acoustic echoes for 
target discrimination are considered. In Sec. 3 – 6, the 
processing pipeline and classification results from [11] 
are summarized and discussed. In Sec. 7, a conclusion, 
and an outlook on future investigations in the field of 
automotive ultrasonic sensing are given.  

2. TARGET PROPERTIES IN ACOUSTIC ECHOES 

Bats, dolphins, and blind people use echolocation to navi-
gate their surroundings. Moreover, they can extract certain 
features about scatterers such as distance, height, orienta-
tion, size, shape, and surface texture [12–14]. The distance 
to an object can be determined by echo delay, based on the 
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time of flight from the transmitter to the object and vice 
versa. With increasing echo delay, the echo amplitude 
decreases, as described by the transmission loss. The trans-
mission loss comprises geometric spreading loss and atmo-
spheric sound absorption [15]. Sound absorption in air in-
creases drastically with higher frequencies. Further, higher 
frequencies are attenuated due to the transmitter and receiv-
er’s directivity index, indicating the scatterer’s direction [16]. 
The energy of an echo also depends on the target strength 𝑇𝑆 
of the scatterer, which is defined as 

𝑇𝑆 = 10 lg (
𝐼echo

𝐼imp

)  dB, (1) 

with the intensity of the echo 𝐼echo and the intensity of the 
impinging sound 𝐼imp at a defined distance from the target. 

Since the impedance difference between most relevant ob-
jects and air is large, 𝑇𝑆 mainly depends on the target’s 
acoustic cross-section, i.e. the size of the reflecting surface, 
and can vary from different directions [17]. Further, the 
target strength can be decreased if the surface of the target 
consists of absorbing material. 
Most objects consist of multiple sub-reflectors, producing 
multiple echoes (highlights). The number and distance of the 
single highlights depend on the object’s geometrical features. 
In the overall backscatter, the single echoes are combined 
into a delay spread echo waveform that exceeds the length of 
the transmitted signal. Furthermore, movement of the scat-
terer or transmitter/receiver causes Doppler spreading [18]. 
Resulting interferences of the highlights appear as ripples 
and notches that can be seen in the temporal and spectral 
structure of the echo signal [16]. 

3. DATA ACQUISITION 

The data set being described in [11] contains measurements 
of 30 relevant objects in parking and maneuvering at a 
sample rate of 215 kSa/s. The measurements are performed 
in a semi-anechoic chamber (lab data) and an asphalt parking 
space (field data). Each object is measured in 151 iterations 
at 55 positions, producing 249,150 labeled measurements per 
environment. A piezo-electric ultrasonic sensor is used to 
transmit frequency-modulated pulses (chirps) ranging from 
42.5 to 52.5 kHz. At higher frequencies, the signals would be 
increasingly attenuated by sound absorption, resulting in a 
lower detection range. At lower frequencies, more extrane-
ous sound sources would be included [1].  
For automotive ultrasonic ranging, usually correlation-based 
thresholding methods are applied to detect single echo points 
[19]. These echo points, containing time of flight and ampli-
tude information, can be seen as a very compressed represen-
tation of the full transducer signal. However, richer features 

based on the raw time signals should be considered for 
classification of obstacles. Therefore, an interface for cap-
turing the transducer signal should be provided in future 
sensors. In [11], a condenser microphone as receiver is used 
as a practical solution for research purposes. The ultrasonic 
sensor’s transfer function is applied to the captured signals to 
imply the sensor’s frequency response. The transmitter and 
receiver are mounted in a wooden plate (Figure 1) on a linear 
rail allowing stationary and dynamic measurements. 

 

Figure 1: Front view (left) and rear view (right) of 
the ultrasonic sensor and condenser microphone 

4. FEATURE EXTRACTION 

To suppress unwanted noise and to limit the signals to the 
frequency range of interest, a finite impulse response (FIR) 
bandpass filter with a lower passband frequency of 40 kHz 
and a higher passband frequency of 55 kHz is applied. The 
object-related backscatter is then cut out from the time signal 
based on the known object distances. The window length is 
768 samples, covering the total backscatter of even broad 
scatterers. In practice, finding the origin of the windows may 
be performed by a sliding window approach or based on the 
conventionally used pulse-echo method for echo detection. 
As discussed in Sec. 2, relevant features for object discri-
mination are in the temporal as well as in the spectral 
structure of an echo. Therefore, we apply the continuous 
wavelet transform (CWT), which is seen as a linear time-
frequency transform, for feature extraction. The CWT of 
a time signal 𝑥(𝑡) is defined as 

𝐶𝑊𝑇(𝜏, 𝑎) =
1

√|𝑎|
 ∫ 𝑥(𝑡)

∞

−∞

 𝜓∗ (
𝑡 − 𝜏

𝑎
)  d𝑡,  (2) 

with the complex conjugated wavelet function 𝜓∗, the lo-
cation of the wavelet 𝜏, and the wavelet scaling factor 𝑎. 
The wavelet is slid over the time signal with different 
scaling factors compressing or dilating the wavelet. The 
scaling can then be related to frequencies in the analyzed 
signal, based on the center frequency of the wavelet. In 
contrast to the more conventional short-time Fourier 
transformation, this allows an improved time resolution 
for higher frequencies and an improved frequency resolu-
tion for lower frequencies [20, 21]. The scalogram is then 
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derived as 𝑆 = |𝐶𝑊𝑇(𝜏,𝑎)|2, representing frequency-
related energies over time. Scalograms of the backscatter 
of a pedestrian and a tube are shown in Figure 2. 

 

Figure 2: Scalogram features [11] 

5. CONVOLUTIONAL NEURAL NETWORK 

Convolutional neural networks (CNNs) are artificial neural 
networks that are very popular in computer vision for 
processing image data. In contrast to conventional neural net-
works, CNNs use convolutions with learned kernel weights 
resulting in a significantly smaller number of trainable pa-
rameters due to the shared weights of the kernels. The kernels 
are slid over an input image, extracting feature maps by 
element-wise multiplications. To reduce the feature map 
dimensions, pooling layers are applied giving invariance to 
small translations [22]. Recently, CNNs are also successfully 
applied for tasks in the field of acoustics such as direction-
of-arrival (DOA) estimation [23], acoustic scene classifica-
tion [24], or sonar target recognition [9]. 
The proposed CNN architecture is shown in Table 1. Zero-
padding is applied for each convolutional layer, followed by 
batch normalization and the ReLU activation function. The 
64 × 32-pixel scalogram images are given into a 2D convolu-
tion layer of shape 5 × 7 to extract low-level feature maps. 
After an average pooling layer, two convolution layers of 
shape 1 × 5 and 5 × 1, respectively, are applied to separately 
extract temporal and frequency features. Two convolution 
layers of shape 3 × 3 are then used to extract high-level fea-
tures. The feature maps are flattened and concatenated with 
the distance feature which is defined by the origin of the con-
sidered window. Finally, two fully connected layers are used 
for classification. After the second fully connected layer, the 
softmax function is applied to map the output to class-speci-
fic probabilities. Dropout and early stopping are used for 
regularization [22]. To perform a binary classification re-
garding traversability, the softmax function can be replaced 
by the sigmoid function with a single neuron in the last fully 
connected layer. 
Stochastic gradient descent (SGD) is used as an optimizer 
during training with the cross-entropy loss function 

ℓ(𝑝, 𝑞) = −∑𝑝(𝑦)  log(𝑞(𝑦))

𝐶

𝑐=1

 , (3) 

where 𝐶 is the number of classes, 𝑝(𝑦) the target distribution 
of the labels 𝑦, and 𝑞(𝑦) the estimated distribution. To en-
hance the model’s robustness, domain-specific data augmen-
tation is applied. A combination of methods such as noise 
injection and time shifting produces the best results. [11] 

Table 1: CNN architecture [11] 

Layer Output dimension 
Scalogram input 64 × 32 
Convolution (5 × 7) 16 × 64 × 32 
Avg. pooling (2 × 2) 16 × 32 × 16 
Convolution (1 × 5) 32 × 32 × 16 
Convolution (5 × 1) 32 × 32 × 16 
Avg. pooling (2 × 2) 32 × 16 × 8 
Convolution (3 × 3) 64 × 16 × 8 
Avg. pooling (2 × 2) 64 × 8 × 4 
Convolution (3 × 3) 64 × 8 × 4 
Avg. pooling (2 × 2) 64 × 4 × 2 
Flatten 512 
Concatenate (+ distance) 513 
Fully connected 256 
Fully connected 7 

 

Figure 3: Classification accuracies 

6. CLASSIFICATION RESULTS 

The classification accuracies for seven object classes (no 
object, small object, curb, bag, tree, tube / pole, pedestrian) 
and traversability using lab and field data are shown in Figure 
3. In both environments, over 90 % accuracy is achieved for 
traversability. Classifying the object classes is more chal-
lenging than traversability. Using lab data, 90.1 % accuracy 
is achieved for the object classes, while only 66,2 % is 
achieved for the field data. This can be ascribed to more 
disturbances in the field, mainly consisting of ground clutter. 
Especially the accurate detection of small objects is hindered 
by interfering clutter. The classification results are discussed 
in more detail in [11]. 
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7. CONCLUSIONS AND FUTURE WORK 

A processing pipeline for classifying obstacles in automotive 
ultrasonic sensing has been proposed using extracted scalo-
gram images as an input to a CNN. Promising classification 
results have been achieved, especially regarding travers-
ability. For future studies, it is planned to include multiple 
measurement cycles in the classification process to increase 
the model’s robustness. A simple majority vote or more so-
phisticated architectures, such as convolutional recurrent 
neural networks, should be examined. To enhance the 
current scalogram representations, where phase information 
is discarded, it is also planned to investigate the value of 
adding phase information to the feature inputs. Further, 
making use of multiple sensors emitting in a round-robin 
fashion and receiving cross-echoes should be considered. 
Scanning the object from different directions adds relevant 
spatial context, potentially increasing classification accuracy. 
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