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ABSTRACT* 

Musical timbre is a complex multidimensional attribute of 
auditory perception, which allows, in a first approximation, 
to discriminate between musical instruments when they 
have the same sound, intensity, and duration. Also, in some 
cases, there are sounds that appear to have very close 
timbral similarity, even when the instruments have different 
acoustic characteristics. This fact can make it difficult to 
classify musical instruments by timbres. We explore a 7-
dimensional abstract space, formed by the fundamental 
frequency and acoustic descriptors extracted from Fourier 
Transform in five musical instruments: Trumpet, violin, 
cello, transverse flute, and clarinet, of a monophonic audio 
record, from the Tinysol and Good-Sounds databases, 
corresponding to the fourth octave. This approach makes it 
possible to define a collection of points in timbral space 
uniquely and allows differentiating sounds played in 
ordinary style on any type of musical instrument. Through 
the geometric distance between musical sounds, we explore 
some Machine Learning techniques to establish categories 
of similarities between musical sounds, instruments, and 
family of musical instruments. It is concluded that the study 
of timbral similarity through geometric distances made it 
possible to find clustering between categories of musical 
timbre. 
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1. GENERAL OVERVIEW: FFT-ACOUSTIC 
DESCRIPTORS 

Musical timbre is a generic multidimensional attribute that 
allows distinguishing between sounds of the same pitch, 
intensity, and duration. Timbre characterization is important 
for the identification and classification of musical 
instruments, for audio analysis and synthesis, and in general 
for Computer-Assisted Composition [1-2]. The study of 
musical timbre can be done from various perspectives, both 
from acoustics and psychophysics [3-4]. Analysis of audio 
recordings can also be used, both in the domain of time 
(spectrograms) and in frequencies (FFT). However, the 
digitization of sounds is based on the Fourier transform of 
audio recordings, where the relevant aspects of musical 
timbre are necessarily contained in the collection of 
amplitude and frequency pairs that emerges from the FFT 
of monophonic audios, with the independence of the 
descriptions that can be made from the domain of time 
(spectrograms) and of the psychoacoustic approach to 
hearing. 
On the other hand, in Western orchestral music, the musical 
sounds form a succession of finite and well-defined 
frequencies (tempered scale). Therefore, the audio 
recording of each musical note and musical instrument, 
with a specific dynamic (pianissimo, mezzoforte, 
fortissimo) provides a unique FFT that characterizes it. This 
FFT will be univocally prescribed by the fundamental 
frequency (f0) and a specific collection of pairs of numbers 
that correspond to the frequencies and amplitudes of the 
partial components (harmonic or not) coming from the 
spectral decomposition of the audio signal. Therefore, the 
musical timbre information must be contained in this set of 
frequencies and amplitudes associated with the digital 
recording of the audio. 
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2. METHODOLOGY 

The open-source sound library Good-Sounds® [9] and 
Tinysol® [10] provide monophonic audio recordings of real 
instruments, played by professional musicians. From these 
libraries, 256 recordings were selected in the WAV audio 
format, corresponding to the instruments Violin, Cello, 
Transverse Flute, Clarinet, and Trumpet, in the fourth 
octave of the equal temperament scale and in the 
mezzoforte dynamic, played in the so-called “ordinary” 
style and in the absence of a mute. For each recording, the 
FFT is obtained with normalized amplitudes, using the 
SciPy library module in Python [11]. Timbral coefficients 
are calculated from the FFTs, which are dimensionless, 
univocal, and independent descriptors of the FFTs [6,8]. 
These six timbral coefficients, together with the 
fundamental frequency (f0) provide, for each audio record, a 
seven-dimensional vector that defines a point in an abstract 
space, which also is a geometric space. In this timbral 
space, points close to each have similar coordinates and, 
therefore, similar timbral coefficients, and consequently 
similar timbral properties, for details see Figure 1. 
Musical sounds with similar fundamental frequency (f0) 
correspond to analogous sounds in the tempered scale. For a 
specific musical instrument, the relative measure of the 
amplitude of the fundamental frequency with respect to the 
set of amplitudes of the FFT (Affinity Coefficient A) and 
the average variation of the envelope of the pulses in the 
FFT (Monotonicity coefficient M) are associated to the 
musical octave [8], the difference in the composition of 
harmonics (Spectral Signature) and the average value of the 
harmonicity of the partial frequencies (Harmonicity 
coefficient H) allow to identify the musical instrument [6]. 
For a given musical instrument and a specific musical 
sound, the relative measure of the amplitude of the 
fundamental frequencies (Sharpness coefficient S, note that 
this is not Zwicker's psychoacoustic sharpness) and the 
average of the deviation of the amplitudes of the partial 
frequencies with respect to the amplitude of the 
fundamental (MA Coefficient) report dynamics [8]. 
However, different musical sounds played by different 
instruments can be perceived as timbrically similar, and 
therefore should be close in timbral space [7].  
To find these similarities in the timbral representation, the 
data set was partitioned by types of instruments, families, 
and musical notes, in order to group them and obtain their 
characteristic mean values. The K-means algorithm was 
applied to these data, which uses Euclidean distance as a 
metric and variance as a measure of group dispersion. The 
K-means algorithm iteratively clusters data points by 
minimizing the sum of squares within the cluster, thus 

being a simple and effective clustering method. Although 
the K-means algorithm tends to generate clusters of similar 
size and spherical shape, we did not find large differences 
when using general techniques such as the Gaussian 
Mixture Model Algorithm (GMM). The results of the 
exploratory analysis with K-means to distinguish groups of 
timbral similarities are shown in the next section. 
 

 

Figure 1. General procedure for timbral similarities 
using FFT and Machine Learning. 
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3. RESULTS AND DISCUSSION 

Three categories or partitions of the data set were studied: 
(3.1) five clusters for the five Musical Instruments, (3.2)  
three clusters to delimit the three families of Instruments: 
Wooden Aerophones (Flute and Clarinet), Metal 
Aerophones ( Trumpet), and String Instruments (Violin and 
Cello), and (3.3)  twelve clusters for the musical sounds of 
the fourth octave, in each instrument separately and 
globally for the set of instruments. The mean values of the 
7-dimensional tuples (fundamental frequency and timbral 
coefficients) were computed for the audio recordings with 
the same instrument and musical sound. 

3.1 Clustering by Instruments 

Figure 2 shows the percentage distribution of data in each 
cluster for the various musical instruments under 
consideration. Even though the data is not grouped into a 
single cluster for each musical instrument, we can observe 
that the data for each musical instrument appear in very 
specific, bounded regions of the timbral space. For 
example, all the sounds of the Flute and the Clarinet appear 
in clusters 4 and 5, respectively, while those of the trumpet 
only appear in clusters 2 and 3. None of the data for the 
Violin and Cello are found in cluster 5. The value of the 
inertia (a measure of how internally coherent the data points 
are within each cluster) of this distribution is 147.83, which 
is equivalent to saying that the average distance between a 
datum and the center of the cluster is 12.2, much lower than 
the distances between clusters 27.5, 109.3, 39.2, and 125.21 
for the centers of cluster 1, 2 4 and 5 respectively. A 
detailed analysis of each timbral subspace by the instrument 
can be performed (omitted for brevity of the report) from 
these values by considering the coordinates of each centroid 
and its mean variance of 12.2. 

 

Figure 2. K-Mean clustering by musical instruments 
in percentages of data by instrument and for both 
databases. 

The same partitioning of the data set was performed for the
Tinysol and Good-Sounds databases separately,  and results 
are shown in Figure 3. The results show similar clustering, 
although the absolute distributions vary, as do the centroids 
of each cluster, as well. It is observed in both bases that the 
Flute and the Clarinet occupy only clusters 4 and 5; that 
none of the data for the violin, the cello, and the trumpet 
appear in cluster 5, and that the majority of the trumpet 
occupies only two clusters (Note that the centroids of each 
cluster vary in both plots of Figure 3). The inertia values are 
144.9 and 130.3, which reports that the dispersion is smaller 
in the Good-Sounds database. 
 

 
 

 

Figure 3. Clusterization by musical instruments in 
percentages of data by database Tinysol (Up) and  
Goodsounds (Bottom). 

The ideal clustering values for K-means are usually given 
through the inflection points of the elbow method, 
represented in the graph of Inertia versus the number of 
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clusters (see Figure 4). Three inflections are observed, in 
K=2, K=4, and K=5; That would be the ideal cluster 
numbers to minimize variance if the clusters were all of 
equal size. The value K=2 would be used if a partition is 
desired to compare the two databases. The value K=5 
corresponds to a partition in terms of the five musical 
instruments. The data used to suggest another partition in 
K=4 for families of Instruments; however, their acoustics 
invite us to consider only three different families: 
chordophones, wooden aerophones, and metal aerophones. 
Possibly the lack of data from other metal aerophones 
causes the inflection bias which would move from K=4 to 
K=3 if we had more metal aerophones common to the two 
databases used. 
 

 

Figure 4. Elbow method for clustering audio records, 
both databases. 

3.2 Clustering by Family of instruments 

Figure 5 shows the clustering with K=3, which corresponds 
to an average separation between data and centroids of 
10.82 (Inertia of 117). These values effectively discriminate 
between wooden and metal aerophones, since the former 
are significantly centered in cluster 2, and the trumpet only 
in clusters 2 and 3. The right part of Figure 5 shows that 
clustering is more effective for aerophones than 
chordophones, and in general, the data are effectively 
separated by more than 50%. 
 

 

 

Figure 5. K-Means clustering by families of 
musical instruments in percentages of data per 
instrument (Up), Silhouette Diagram (Bottom). 

3.3 Clustering by musical sounds 

For each musical instrument, a K-means analysis was 
performed to evaluate the clusters by sound (K=12). 
Figures 6 and 7 show the results of the Clarinet (36 audios) 
and the Flute (60 audios). The color scale indicates the 
percentage of records in each cluster by musical sound. The 
results corroborate that given an instrument and musical 
sound, the characteristic timbral space occupies defined 
regions [5] and the tabulated values of its characteristic 
timbral coefficients [4] are within the cluster referred to in 
Figures 6, 7, and 8.  
In each  figures a clustering by musical notes is observed, 
since 12 sounds corresponding to the fourth musical octave 
of each instrument were considered, the total number of 
clusters is K=12, identified at the top of each figure with 
numbers ranging from 0-11. 
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Figure 6. Matrix of clustering by musical notes for 
Flute (Up) and Clarinet (Bottom). The numbers at the 
top of the figures correspond to each of the 12 clusters 
(0 - 11). 

It can be seen that each sound occupies a specific region, 
that is, it does not occupy the same set of clusters for 
another musical note. For example, it is observed that the 
total data of sound C4, for the clarinet, occupies two 
clusters 3 and 10 and there is no other musical note that 
occupies only these two clusters. This analysis is extended 
to all musical instruments and notes. 
 

 
 

 

Figure 7. Matrix of clustering by musical notes for  
Violin (Up) and Cello (Bottom). The numbers at the 
top of the figures correspond to each of the 12 clusters 
(0 - 11). 

Sounds of the same fundamental frequency (f0) on different 
musical instruments can have timbral similarity, so their 
audio records should share the same region of timbral 
space. For each of the 12 fourth octave sounds, a K-means 
analysis was performed with K=5. As an example, Figure 9 
shows the result for note D4, showing that the FFT have 
similarity in terms of the distribution of the partial 
components both in frequency and amplitude. 
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Figure 8.  Matrix of clustering by musical notes for 
Trumpet. The numbers at the top of the figures 
correspond to each of the 12 clusters (0–11). 

It is observed in the trumpet that no sound occupies a single 
cluster, being an element that differentiates this instrument 
from the group of musical instruments analyzed. In 
addition, it is observed that the number of clusters per 
musical sound is bounded between 2 and 3 clusters. 
 

Figure 9.  K-Mean clustering by families of 
instruments for the D4 sound. Note the similarity in 
the FFT spectra for clusters 2 and 3. 

As another relevant example, the C#4 sound results are 
shown (Figure 10). We can see that clustering predicts 
timbral similarity and similarity in the FFT envelopes of 
acoustically different musical instruments, as in the case of 
the Violin and Clarinet. 
 

 

Figure 10.  K-Mean clustering by instrument families 
for the C#4 sound. Note the similarity in the spectra of 
the FFTs in cluster 1 and the difference to the trumpet 
FFT in clusters 4. 

4. CONCLUSIONS 

The relevant aspects of musical timbre are contained in the 
Fast Fourier Transform, which can be characterized by a set 
of dimensionless coefficients (Affinity, Sharpness, 
Harmonicity, Monotony, Medium Contrast, and Medium 
Affinity) that together with the fundamental frequency form 
a timbral space of seven dimensions, where the timbral 
similarity can be defined as the geometric proximity 
through a Euclidean metric in that space. 
The exploratory analysis of the Goodsounds and TinySol 
monophonic audio databases using the K-means algorithm 
allowed partial clustering of the data. The elbow criterion 
allowed us to define the groups of possible clusters for the 
analyzed data, K=2 to compare databases and K=5 for 
musical instruments (Figure 4). 
In the partition by musical instruments, we can observe that 
the data of each musical instrument appear in very specific 
bounded regions of the timbral space. Thus, all the Flute 
and Clarinet sounds appear in two clusters (4 and 5), the 
Trumpet sounds only in clusters 2 and 3, and none of the 
Violin and Cello data appears in cluster 5 (Figure 2). The 
same data partition was performed considering each of the 
individual Tinysol and Goodsounds databases, observing a 
similar behavior for the Flute, Clarinet, Violin, and Cello. 
As for the Trumpet, it does not occupy cluster 5 in any of 
the databases. When considering the division by Families of 
instruments, we find clear discrimination between wooden 
and metal aerophones; and between aerophones in general 
and chordophones (Figure 5). Considering the total data, 
these are effectively separated by more than 50%. For the 
partition by musical sounds, the results corroborate that 
given an instrument and musical sound, the characteristic 
timbral space occupies defined regions. Thus, it was 
observed that no musical sound occupies the same cluster as 
another sound (Figure 6 - 8). 
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The inertia value for instrument partitioning states that the 
mean distance between the data and the center of the cluster 
is much less than the distances between each of the five 
clusters. A similar behavior occurs when we look at 
families of instruments. These results allow us to affirm that 
the distance between the groups of clusters analyzed is 
well-discriminated. 
Finally, In the partition by musical notes for the timbral 
similarity analysis, it was possible to identify similarities in 
the distribution of the partial components (both in frequency 
and amplitude) between the FFT spectra when compared 
with another instrument, consistent with the hypothesis that 
timbrally similar sounds, in timbral space, must belong to 
the same cluster (Figure 9 - 10). 
For future work, it is proposed to extend this analysis to the 
rest of the musical octaves, to incorporate other musical 
dynamics and other musical instruments. 
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