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ABSTRACT

Verbal communication can be challenging in the presence
of acoustic noise. To tackle this problem, microphone
arrays coupled with numerous processing methods have
been studied in the past few decades. Recent interest in
Augmented Reality (AR) applications gives rise to head-
worn microphone arrays. This highlights additional im-
portant aspects such as motion of the capture device with
respect to the scene, the need to preserve spatial character-
istics in the processed sound, and the tightened constraints
on latency and computational budgets. The SPeech En-
hancement for Augmented Reality (SPEAR) Challenge,
endorsed by the IEEE Challenges and Data Collection ini-
tiative, was organized in order to further ignite interest in
this important problem and to obtain a better sense of the
remaining technological gaps. The challenge is based on
an adaptation of the recently published EasyCom dataset
that contains noisy conversation recordings from a glasses
form-factor AR device with 6 microphones along with the
positional information and additional labeled modalities.
A competitive evaluation of the challenge entrant algo-
rithms was carried out by using both objective metrics and
subjective listening tests. The current contribution is fo-
cused on providing an overview of the SPEAR challenge
and highlighting some of the most important findings and
outcomes.
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1. INTRODUCTION

Acoustic noise accompanies people in many everyday sit-
uations, be it a busy street, a subway station, or a social
gathering [1]. The acoustic noise hinders verbal commu-
nication between people thereby hurting social connec-
tion. Significant efforts have been put into understand-
ing the acoustics of the problem [2], harvesting the power
of microphone arrays and development of computational
methods to enhance the desired voice while controlling
the noise [3].

The rising new augmented reality (AR) technology is
promised to bring strong computational and sensing capa-
bilities closer to the user’s sensory system, for example, in
the form of AR glasses. This has the potential to facilitate
new exciting applications assisting people to communi-
cate effortlessly in even the most acoustically challenging
situations by capturing the sound, processing and manipu-
lating it in a desired way, and then delivering the enhanced
version to the listener seamlessly and in real-time.

This application also brings up new technological
dilemmas related to how dynamic the potential scenarios
can get, how tight the latency constraints are, and what
the fidelity of spatialization requirement would be to de-
liver seamless and natural interactions. Tackling these
challenges today is even more exciting because of the ris-
ing power of artificial intelligence (AI) systems due to in-
creased computational capacities and data diversity.

In order to gain a better insight into this problem, the
Speech Enhancement for Augmented Reality (SPEAR)
Challenge [4] was proposed, and was endorsed by the
IEEE Challenges and Data Collection initiative. The main
aim of SPEAR is to foster excitement about the potential
of AR technology in helping people to communicate and
stay connected. We hope to bring the relevant scientific
communities, such as acoustics, spatial hearing, signal
processing, and AI, closer together and facilitate a tighter
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collaboration.
This paper summarizes some of the main aspects of

the challenge by explaining the task, the data, and the eval-
uation procedures in Section 2, giving an overview of the
participating algorithms in Section 3, presenting and dis-
cussing the results in Section 4, and a brief conclusion and
proposed future directions in Section 5.

2. SETUP

This section describes the challenge including the task, the
various datasets employed, and the evaluation approach.

2.1 Task

The setting of the challenge revolves around an in-
door restaurant-like environment. Several participants are
seated around a table, and a glasses-form factor micro-
phone array is worn by one of the participants. The mi-
crophones capture partially overlapping voices of the par-
ticipants as well as the restaurant noise. The task is to pro-
duce the best possible estimate of the voice of the desired
participant in the ears of the device wearer using the mi-
crophone array signals as the input. The term best possible
is not yet clearly defined in the context of augmented real-
ity applications; it may involve aspects like improved in-
telligibility, being free from processing artifacts, reduced
reverberation and ambient noise, and preservation of spa-
tial cues. In order to compete in this challenge the al-
gorithm latency of a proposed solution must not exceed
50ms and no external data can be used. Some pre-trained
models were allowed provided they do not exceed the la-
tency limitation.

2.2 Data

To maximize diversity of the data, four distinct datasets la-
beled D1, D2, D3, and D4 were provided, as described in
more detail below. All four datasets are based to a various
extent on the EasyCom [5] dataset that contains record-
ings of 3-5 people seated around a table and having nat-
ural conversations with a restaurant-like ambient noise at
≈ 70 dB(A) produced by a number of uncorrelated loud-
speakers distributed throughout the room. All four sets
contained 6-channel audio from the glasses’ form-factor
microphone array depicted in Fig. 1. Channels 5 and 6
are binaural microphones placed at the entrance to the ear
canal. The audio sample rate was 48 kHz. In addition
to the microphone array recording, the participants were
provided with azimuth and elevation of the desired source

direction with respect to the array center. Head orientation
has also been provided as quaternions. Both, the direction
of the source and orientation of the array were sampled at
a rate of 20 Hz. This data was included to remove the
desired source localization problem and allow the partici-
pants to focus on the speech enhancement task.

Figure 1. Glasses form-factor microphone array that
was used to record and/or simulate the four datasets
provided with the challenge.

Table 1 summarizes some of the most important as-
pects of the four datasets, D1-4. Each dataset is roughly
the same duration of 5 h and is split into 15 sessions
(9 train | 3 dev | 3 eval) with roughly equal duration of
≈ 20 min each. The first dataset, D1, contains the actual
audio and orientation taken directly from EasyCom. The
target signals provided with D1 were the close-talk mi-
crophone recordings attached to each participant delayed
to roughly match the microphone array recordings. The
second dataset, D2, is a reproduction of D1 using the ac-
tual room’s geometry with the table added as a reflector.
Source signals for the simulation were obtained by fur-
ther denoising the close-talk microphones of each partici-
pant using the CEDAR DNS 2 plugin [6]. The target sig-
nals for this dataset are the signals in the binaural micro-
phones (channels 5 and 6) simulated with only the desired
source present and using only the direct path propagation.
The third dataset, D3, was introduced to improve diversity
by varying the simulated room dimensions, reverberation
level, and position of the table in the room. Everything
else was kept the same as in D2. Finally, D4 is a simulated
dataset with artificially created dialogue. Here, the indi-
vidual participant voices were created by concatenating
clean speech utterances with randomly introduced pauses.
The main distinction of D4 from D1-3 is the much more
significant overlap between the voices of the participants
as shown in Table 2.
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Table 1. Summary of some of the most important aspects of the four provided datasets, D1-4.
D1 D2 D3 D4

microphone audio real simulated simulated simulated
target audio close-talk mic binaural mics binaural mics binaural mics
head movements real real real synthetic
acoustic diversity fixed conditions fixed conditions multiple rooms/locations multiple rooms/locations
voices overlap little little little substantial

Table 2. Percentage of audio content as a function of
the number of concurrent voices.

# voices 1 2 3 4
D1-3 62% 32% 5% 1%
D4 2% 26% 43% 29%

2.3 Evaluation

The performance of the competing algorithms was evalu-
ated using both objective metrics and subjective listening
tests.

The objective metrics included energetic metrics like
SNR, fwSegSNR [7], and SI-SDR [8], speech quality such
as PESQ [9], speech intelligibility such as STOI [10], and
the binaural intelligibility metric MBSTOI [11]. In total,
12 objective metrics were used. Additional details can be
found on the challenge webpage [4].

The subjective listening tests were administered us-
ing the GoListen platform [12]. The participants were re-
cruited and paid using Prolific [13], with the correspond-
ing consents obtained through Qualtrics [14]. The pro-
cess included an equipment check based on audibility of
tones at different frequencies and a headphone check by
comparing levels of stereo tones with and without phase
inversion. Passing the two checks was strictly required
to proceed to the actual listening tests. The test included
pairwise comparisons between audio examples produced
by the various algorithms. In addition, free-form feedback
was also collected. Each session included 20 pairwise
comparisons with a total of over 400 recorded sessions.
In this test only up to two algorithms from each partic-
ipating research team were selected for full round robin
comparison. Participants who submitted more than 2 en-
tries were asked to nominate their preferred algorithms.
The organisers used this preference together with results
of pilot tests and the system descriptions to select the best

performing and most diverse systems for evaluation in the
listening test.

3. PARTICIPATING ALGORITHMS

Overall, 5 research teams from around the world have par-
ticipated in the challenge. Most teams have submitted
multiple entries which, together with the passthrough and
the baseline, resulted in 16 distinct algorithms. For conve-
nience, the various algorithms (abbreviated as alg. below)
were labeled using capital letters as detailed below.

Alg. A - passthrough, i.e. the binaural microphone
signals as captured by the array.

Alg. B - the baseline. This is the widely used max-
imum directivity beamformer (a.k.a isotropic Minimum
Variance Distortionless Response (MVDR)) obtained by
assuming stationary diffuse noise as described in more de-
tail, for example, in Sec 2.1 of [15].

Alg. C, D - these entries were made by Audifon
GmBH, Kölleda, Germany. Alg. C consists of a 3-
mic beamformer followed by a single channel subtraction.
The beamformer points a fixed beam towards the front by
summing up the left and right binaural microphone sig-
nals with a 2-sample delayed version of the frontal mi-
crophone. Alg. D is obtained by adding a compressor
and a limiter to Alg. C. See [16] for additional details.
An important advantage of these two entries over all other
participants in the challenge is its very low computational
and power consumption footprint - a version of this algo-
rithm was shown to run successfully on ARM Cortex M4
microcontroller.

Alg. E - this contribution was made by a team from
the Institute of Electronic Music and Acoustics Univer-
sity of Music and Performing Arts, Graz, Austria. The
proposed algorithm uses the maximum directivity beam-
former and matched filters to form the input features and
encode the direction of the desired source. Two conse-
qutive U-net structures, sub-band and full-band, are then

625



10th Convention of the European Acoustics Association
Turin, Italy • 11th – 15th September 2023 • Politecnico di Torino

applied with gated RNN layers in the bottleneck. The out-
put is respatialized by convolving with the binaural mi-
crophone transfer functions in the direction of the desired
source. Additional details can be found in [17].

Alg. F, G, H, I - submitted by a research team from
Sogang University, Seoul, South Korea. The first stage
in all systems is independent monaural enhancement of
the array signals using a DNN based on LSTM-ResUNet.
Algs. F and G then use the baseline beamformer to obtain
binaural outputs whereas H and I use the authors’ own
beamformer. Alg. I additionally uses a TRUNet post filter
on each of the binaural outputs. Alg. G differs from the
others in the training parameters of the DNN. Additional
details can be found in [18].

Alg. J, K, L, M, N - submitted by a research
team from the University of Illinois Urbana-Champaign,
Champaign, IL, USA. The overall method proposed here
consists of three stages. First is the challenge baseline
beamformer followed by a monaural speech enhancement
based on DeepFilterNet 2 similar to Alg. P. The monau-
ral filter was further fine-tuned using the baseline beam-
former output. In the final stage, a speaker separation net-
work with temporal convolutions and a causal transformer
was trained to estimate a mask to be applied to the monau-
ral postfilter output. The 5 submissions differ by the pa-
rameter of the mask thresholds and the frequency range of
the speaker separation module. Additional details can be
found in [19].

Alg. O, P - submitted by the research team from
Electrical and Electronic Engineering Department, Impe-
rial College London, London, UK (challenge organizers).
The general approach proposed is called the subspace hy-
brid MVDR beamformer; it is aiming to benefit from an
adaptive beamformer while minimizing the robustness is-
sues involved with voice activity detection and adapta-
tion. The algorithm consists of two stages. The first stage
produces two outputs; one using the Iso MVDR beam-
former exactly as in baseline Alg. B, the other using a hy-
brid MVDR beamformer that utilizes a dictionary of pre-
computed noise covariance matrices (NCM) and selects
the one that minimizes output power at any given time-
frequency bin. In the second stage, both beamformer’s
outputs are projected into the subspace spanned by the first
eigenvector of the inter-beamformer correlation matrix to
reduce musical noise generated by frequent switching of
the NCM in the hybrid MVDR beamformer. The reader
is referred to [15] for further details. The challenge en-
try Alg. O is an extension of the subspace hybrid MVDR
beamformer by duplicating the process with the left bin-

aural mic and the right binaural mic as a reference. Alg. P
is a extension of Alg. O by adding a post filtering step on
each channel separately using the single-channel denois-
ing approach called DeepFilterNet2 [20].

Table 3 compares some of the important computa-
tional aspects of the various algorithms.

4. RESULTS AND DISCUSSION

Results of the objective evaluation for three selected met-
rics are plotted in Figs. 2, 3, and 4. Although the results
vary significantly between metric, a few common obser-
vations can be made. First, although the baseline appears
to be quite effective according to the objective metrics,
most competing algorithms were able to result in more
significant benefits. Second, submissions by the different
research teams seem to be consistently grouped and per-
form similarly with respect to the other teams. Loosely,
the performance according to all three metrics can be or-
dered from high to low as follows: Alg. E, Algs. J-N,
Algs F-I, Algs O and P, and Algs C and D.

Figure 2. Improvement in binaural intelligibility as
measured by MBSTOI relative to the passthrough
condition, Alg. A. The blue horizontal line indicates
the baseline performance for convenience.

Results of the subjective pairwise comparison in the
listening tests are shown in Fig. 5. It can be seen that
overall alg. E is strongly preferred over all other entries.
Surprisingly, alg E is also the only one that outperforms
the baseline in the listening test.

An aggregate percentage of wins for each algorithm
was computed and is presented in a ranked order in Fig.
6. This picture also shows that alg. E is expected to be pre-
ferred over another randomly selected algorithm in most
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Table 3. Summary of important computational characteristics of the competing algorithms.
Alg. spatial filter single-channel/postfilter computational complexity

B model(DSP)-based none moderate/low
C, D model(DSP)-based model(DSP)-based low

E learning(NN)-based learning(NN)-based high
F,G,H,I model(DSP)-based learning(NN)-based high

J,K,L,M,N model(DSP)-based learning(NN)-based high
O,P model(DSP)-based learning(NN)-based moderate

Figure 3. Improvement in signal to noise ratio as
measured by fwSegSNR relative to the passthrough
condition, Alg. A. The blue horizontal line indicates
the baseline performance for convenience.

Figure 4. Improvement in speech quality as mea-
sured by PESQ relative to the passthrough condition,
Alg. A. The blue horizontal line indicates the base-
line performance for convenience.

cases. Algorithm E is followed with a significant gap by
the baseline alg. B, which is closely followed by alg. M.

Figure 5. Proportion of the times in which the row
index algorithm was preferred over the column index
algorithm in perceptual listening tests.

A couple important observations can be made by an-
alyzing the results of evaluations with the algorithm char-
acteristics summarized in Table 3. First, it is interesting to
observe that, according to the perceptual evaluation, alg.
C is ranked in the middle and is expected to be preferred in
roughly half of the cases. This is an important result both
because alg. C came after most of the other algorithms ac-
cording to the objective metrics and because the algorithm
is by far more efficient computationally than the rest of the
entries. Secondly, it is interesting to note that the best per-
forming alg. E is the only approach which is end-to-end
learning-based including the spatial filter. This might sug-
gest that learning-based approaches have the potential to
utilize spatial information more effectively than even the
most sophisticated adaptive model-based beamformers.
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Figure 6. Overall predicted percentage of times in
which each of the algorithms is expected to win ver-
sus another randomly selected one.

5. CONCLUSION

An international challenge on SPeech Enhancement for
Augmented Reality (SPEAR) was organized and success-
fully run with a total of 14 submissions from research
teams around the world including Germany, Austria, UK,
USA, and South Korea. The submissions included ex-
tremely low power algorithms ready to run on miniatur-
ized hearing aid devices, hybrid solutions combining ad-
vanced adaptive beamforming with DNN-based pre/post-
processing, and end-to-end learning-based systems. All
the submissions were evaluated using both objective met-
rics and perceptual listening tests. The results show that,
while most algorithms can outperform the baseline in ob-
jective evaluation, beating the baseline in a perceptual test
is rather hard. This can be related to the trade-off between
interference suppression and the desired speech distortion
that is inevitably introduced by most enhancement algo-
rithms. Notably, the best performing algorithm consis-
tently outperformed the rest of the competitors and the
baseline in both objective and subjective evaluation. In-
terestingly, this solution from the Institute of Electronic
Music and Acoustics, Austria, is the only submission that
was learning-based end-to-end. Looking forward, several
important directions can be explored. First, the algorithms
explored in this challenge haven’t utilized the head rota-
tion information, which can be beneficial for better spatial
tracking of interference. Second, diversity of the data can
be improved to better generalize to a wider variety of sce-

narios and applications. Third, multi-modal approaches
can be explored that benefit from visual and other domains
much like humans are able to do in acoustically challeng-
ing conditions.
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