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ABSTRACT

Head-related transfer functions (HRTFs) describe the in-
dividual spatial filtering of our ears, head and torso. The
finite element method (FEM) can be used to compute
HRTFs numerically. However, geometrical complexity,
densely sampled frequencies, and fine spatial discretiza-
tion, lead to considerable computational costs of these nu-
merical models. In this contribution, we propose a highly
efficient method to compute HRTFs numerically based
on model order reduction (MOR) of corresponding large-
scale FEM models. Krylov subspace-based MOR derives
compact yet highly accurate surrogate models. While the
compact model’s generation is computationally demand-
ing, its solution is significantly faster than that of the cor-
responding reference FEM model. A scanned head geom-
etry is used to evaluate this method in a frequency range of
1Hz to 10.000Hz in 25 logarithmic steps. The 935.292-
dimensional FEM model is reduced to a dimension of only
100 with a maximum magnitude error of 0.0257 dB for
frequencies of 6813Hz or below. The FEM model solves
in 4 h while the compact model takes only 37ms, exclud-
ing the creation process of 1 h.
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1. INTRODUCTION

Head-related transfer functions (HRTFs) model spatial re-
ception of sound and are crucial for binaural auraliza-
tion [1]. They are commonly determined by either mea-
surements or computer simulations. Either way, they re-
quire densely-sampled directions and frequencies, result-
ing in large data sets. Therefore, these data sets are often
recast into more efficient representations for later appli-
cation by using for instance spherical harmonics [2] or
singular value-based approaches [3, 4]. Obtaining data
via measurements or numerical simulations is an elab-
orate process. The former requires measurements from
numerous directions, the latter introduces high computa-
tional costs. These costs arise from the fine mesh required
for sufficient accuracy, which leads to a high-dimensional
system of equations. Moreover, this system must be
solved for a large number of frequencies, multiplying the
computational burden.

A prominent way to eliminate this bottleneck is the
concept of model order reduction (MOR). Starting from a
large-scale numerical model, this methodology constructs
a highly accurate surrogate model of significantly smaller
dimension [5]. As a result, all subsequent computations
are accelerated by several orders of magnitude. The gen-
eral idea is to identify patterns in the solution and to re-
strict the solution to these patterns. These patterns can be
identified by e.g. modal analysis [6] or Krylov subspace-
based methods [7,8]. Furthermore, the numerical analysis
might deploy the finite element method (FEM) [7] or the
boundary element method (BEM) [9]. MOR for acous-
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tic systems is well-established with applications ranging
from car interiors [7] to ribcages and sharks [10]. How-
ever, little work has investigated the potential of MOR in
the context of HRTF computations.

Therefore, this work proposes MOR as an efficient
approach to numerically determine HRTFs. The proce-
dure is demonstrated for a numerical case study of near-
field HRTFs for a scanned head geometry [11]. This paper
is structured as follows: Section 2 describes the case study
and the workflow of its mathematical modeling, includ-
ing initial partial differential equations (PDEs), its trans-
formation to a system of ordinary differential equations
(ODEs) by the FEM and finally, a reduced order model.
Section 3 presents a corresponding near-field HRTF com-
puted by the FEM and by its reduced version. The con-
clusion is provided in Section 4.

2. MATHEMATICAL MODELING

Figure 1. Workflow of mathematical modeling: The
governing partial differential equation (Helmholtz
equation) is spatially discretized by e.g. the FEM into
a high-dimensional system of ODEs. In a subse-
quent step, MOR generates a highly accurate surro-
gate model of significantly smaller dimension.

Fig. 1 demonstrates the general workflow of mathe-
matical modeling. The physicical setup is described by a
linear Helmholtz equation [12] arising from the continuity
relation and linearized Navier-Stokes equations:
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where p is the acoustic pressure, µ the dynamic viscosity,
and K the fluid’s bulk modulus. The sonic velocity is de-
noted by c, the density by ρ0 and mass sources by Q. In
general, this PDE cannot be solved analytically. Numeri-
cal methods such as the FEM or the BEM overcome this

limitation by approximating the original PDE by a large-
scale system of ODEs:

Σ =

{
MMM p̈pp+CCC ṗpp+KKKppp = BBBuuu

yyy = CCC ppp
, (2)

where ppp ∈ IRn is the state vector of nodal pressures, MMM ∈
IRn×n the mass matrix, CCC ∈ IRn×n the damping matrix
and KKK ∈ IRn×n the stiffness matrix. BBB ∈ IRn×p contains
fluidic loads scaled by the input uuu ∈ IRp. The output
matrixCCC ∈ IRq×n assembles the user-defined outputs yyy ∈
IRq . Numerically computing HRTFs requires a harmonic
analysis of this system, which reads[

−ω2MMM + i ωCCC +KKK
]
p̂̂p̂p = BBB û̂ûu, (3)

where p̂̂p̂p and û̂ûu contain the corresponding complex ampli-
tudes of nodal pressures and loads, respectively. This sys-
tem of algebraic equations needs to be solved for each an-
gular frequency ω of interest. Therefore, high-resolution
HRTFs imply a significant computational effort.

A well-established methodology to drastically reduce
this burden is MOR, which constructs highly efficient yet
accurate surrogate models. The idea is to identify pat-
terns in the solution space and to approximate the solution
as some combination of these patterns. Mathematically,
each pattern corresponds to a vector of nodal pressures.
These patterns are collected into a matrix VVV ∈ IRn×r as
its column vectors. Pressure distributions can now be ap-
proximated by combining these patterns according to:

ppp = VVV pppr. (4)

Here, VVV contains the r identified patterns as its column
vectors and pppr their corresponding weights. VVV is also re-
ferred to as the reduced basis and pppr as the reduced state
vector. Introducing Eqn. (4) into the original system in
Eqn. (2) and projecting it onto VVV results in a reduced sys-
tem:

Σ =

{
MrMrMr p̈ppr +CrCrCr ṗppr +KrKrKr pppr = BrBrBr uuu

yyy = CrCrCr pppr

with: {MrMrMr/CrCrCr/KrKrKr} = VVV T {MMM/CCC/KKK} VVV

BrBrBr = VVV T BBB, CrCrCr = CCCVVV

(5)

All matrices and vectors except for input and output are
reduced versions of their counterparts in Eqn. (2). A
prominent methodology to compute the reduced basis are
Krylov subspace-based methods, which are well-suited
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Figure 2. Right ear’s near-field HRTF (radius 0.25m) computed by FEM-analysis (left) and its reduced order
model (middle) with a maximum magnitude error of 0.0257 dB for frequencies between 1Hz and 6813Hz.
This error reaches 9.35 dB for the last sample at 10 kHz due to the expansion point of s0 = 0Hz. In addition,
the difference in sound pressure level is displayed (right). Note the modified scale from −0.1 dB to 0.1 dB.

for large-scale models and have excellent approximation
quality in the frequency domain [5]. They ensure that the
Taylor-expanded transfer function of the original model
and its reduced counterpart match in the first coefficients.
Please note that the Taylor expansion is a local approxima-
tion and done around a chosen expansion point s0 in the
frequency domain. However, a reduced basis may contain
column vectors from several frequencies to ensure reli-
able results in the frequency range of interest. A variant
particularly for systems as in Eqn. (2) is the second-order
Arnoldi method (SOAR) [13], which is also used here.

3. NUMERICAL CASE STUDY

A scanned head geometry [11] as indicated in Fig. 1 serves
as a numerical case study. The head is enclosed by a
sphere of radius 0.25m with absorbing boundary condi-
tions, which restricts the derived HRTFs to the near field.
The pinnae are meshed with an elementsize of 1mm,
while the global elementsize of 5mm in combination with
quadratic elements ensures reliable results for frequencies
up to 11.44 kHz. According to the reciprocity principle, a
wall velocity of 1 mm

s is applied to the blocked ear. The
FEM model translates into a second-order system as in
Eqn. (2) of dimension n = 935.292. This system is sub-
sequently reduced by SOAR to a dimension of r = 100

around an expansion point s0 = 0Hz. Both the orig-
inal FEM model and its reduced counterpart are evalu-
ated for 25 logarithmically-spaced frequencies from 1Hz
to 10.000Hz. Fig. 2 presents the right ear’s HRTF com-
puted by the original FEM model and its reduced version
as well as the latter’s deviation. Due to the Taylor expan-
sion at s0 = 0Hz, the approximation error is negligible
for low frequencies, but rises towards 10 kHz. This er-
ror can be tuned by choosing a different expansion point
or also multiple expansion points. The reduced model’s
dimension impacts the error as well. Tab. 1 provides the
computational times of both approaches. Please note that
the efficiency gained by MOR increases with the number
of evaluated frequencies.

Table 1. Comparison of the computational times for
analyzing comprising 25 frequencies (Intel® Xeon®
CPU E5-2687W v4 3.0GHz and 64 GB RAM).

Model Dimension CPU time
Original 935, 292 4:11:21 h

Reduced 100 1:10:21 h (Write, MOR)
37ms (Simulation)
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4. CONCLUSIONS AND OUTLOOK

This work proposes Krylov subspace-based MOR to ef-
ficiently compute HRTFs from scanned human geome-
tries. This concept is successfully demonstrated for a
FEM model of a scanned head, although BEM models are
equally feasible. The computational time is reduced by
72% while hardly compromising on accuracy. This speed
up increases drastically with the number of frequencies to
be evaluated. In addition, accuracy can be adjusted by in-
creasing the reduced model’s dimension and by optimiz-
ing the choice of expansion point(s).

To achieve a reasonable model dimension, the case
study is limited in terms of maximum frequency and en-
closure dimension. Furthermore, projection-based MOR
relies on system matrices, which might be difficult to ob-
tain in case of commercial software. MOR by Krylov sub-
spaces lacks an a priori error bound. Therefore, accuracy
is computed by a comparison to the original model’s solu-
tion; however, evaluating few frequencies suffices.

Future work will investigate the potential of paramet-
ric MOR, which is yet to be unleashed. This methodol-
ogy preserves parameters in symbolic form with the re-
duced order model, enabling efficient parametric studies.
This translates into highly efficient HRTF-customization
to different individuals, without the need for adjusting the
original model and reducing it again.
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