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ABSTRACT

The construction of a sound wave propagation operator
in the presence of a base flow is addressed here from
an acoustic potential function expressed in a very general
form, as proposed by Pierce [1]. In particular the velocity
field is not obtained by taking the simple gradient of this
potential scalar function. Among all the possible formu-
lations, we show that it is possible to choose a self-adjoint
form already used by the authors in aeroacoustics [2, 3].
This formulation, called Pierce’s wave equation, allows
us to establish from a variational principle, properties of
acoustic energy conservation [4] together with a high fre-
quency approximation which does not present any singu-
larity due to the presence of caustics [5]. Geometrical
acoustics equations are also retrieved [6].
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1. INTRODUCTION

The motivation that led to this work is to propose a wave
equation able to accurately describe propagation effects in
the presence of an arbitrary shear base flow without cou-
pling with the vorticity mode. The linearization of Eu-
ler equations, which describes without approximation the
propagation through a base flow, does not allow to decou-
ple the acoustic solution from hydrodynamic instabilities.
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Following the approach proposed by Pierce [1], a gen-
eral definition of the acoustic scalar potential ϕ can be in-
troduced leading to an associated wave equation. Among
all these equations, a self-adjoint operator is selected to
ensure the conservation of acoustic energy [7]. The cou-
pling with the instability modes becomes formally impos-
sible by construction with this building principle. It re-
mains to verify that the chosen operator provides a good
approximation of propagation effects. Pierce’s equation
has been finally selected,

D2
0ϕ−∇ · (a20∇ϕ) + (∇ · u0)D0ϕ = 0 (1)

where D0 = ∂t + u0 · ∇ is the material derivative along
the mean flow, u0(x) is the velocity of the base flow and
a0(x) the speed of sound. The primitive acoustic vari-
ables are determined from the acoustic potential, namely
for the velocity and pressure,

u = (A/ρ0)∇ϕ p = −AD0ϕ (2)

where A = p
(γ−1)/γ
0 . For a parallel base flow [2], the pre-

vious expressions can be simplified by noting that the base
flow satisfies ∇p0 = 0 and ∇ · u0 = 0. For simplicity,
but noting that this assumption is very often verified, we
assume in all that follows that ∇p0 ≃ 0 for the reconstruc-
tion (2).

2. ENERGY CONSERVATION

Recasting Eq. (1) as L0 ϕ = 0, the self-adjointness prop-
erty of L0 ensures the existence of a Lagrangian density
Λ

L =
1

2
< ϕ,L0 ϕ >=

∫∫
Λ dx dt
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which is found to be such that

−2Λ = (D0ϕ)
2 − a20 (∇ϕ)

2 (3)

The variational principle for Λ = Λ(∂tϕ,∇ϕ,x) im-
plies that there is no variation over space-time of the La-
grangian, δL = 0. In particular, the zero variation in time
leads to the energy conservation equation

∂Ea
∂t

+∇ · F a = 0 (4)

where Ea is the acoustic energy density and F a flux, given
by

Ea = ∂tϕ
∂Λ

∂(∂tϕ)
− Λ F a = ∂tϕ

∂Λ

∂(∇ϕ)
(5)

Eqs. (3) and (5) allow to retrieve in a very elegant way
the general energy equation derived by Morfey [4]. More
generally, the variational principle can also be formu-
lated by introducing the space-time differentiation ∇̇ =
(∂t,∇)T as follows,

∇̇ · T = 0 (6)

where T is the fourth-order stress energy tensor. Eq. (4)
corresponds to the first scalar equation of system (6).

3. GEOMETRICAL ACOUSTICS

Pierce’s equation (1) can also be recast in the form of a
divergence by using ∇̇, namely

∇̇ ·
(
E · ∇̇ϕ

)
= 0 (7)

where the E tensor reads

E =

(
1 uT

0

u0 u0 ⊗ u0 − a20I

)
(8)

and I is the space identity tensor. By considering a lo-
cal plane wave for the acoustic potential, that is ϕ =
Aei(k·x−ωt) in Eq. (7), the real part of this expression pro-
vides the dispersion relation of acoustic waves whereas
the imaginary part provides the acoustic energy conser-
vation. This compact form (7) allows furthermore to de-
termine the associated Hamiltonian H0 expressed in the
physical space by introducing a suitable metric [8], and to
finally derive ray-tracing equations [5, 6].

4. CONCLUDING REMARKS

Some properties of self-adjoint Pierce’s Eq. (1) have been
briefly emphasized here. The use of a scalar potential (2)
prevents any coupling with the vorticity while taking into
account sound propagation effects in presence of a base
flow. The variation principle provides a clear statement
about the acoustic energy conservation. A consistant for-
mulation of geometrical-acoustics approximation is also
found.
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