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ABSTRACT* 

We trained a set of K-means clustering models in an 
unsupervised learning environment on acoustic and visual 
data to address how the visual and auditory modalities 
interact when accessing phonological categories in the face 
of a noise source (which introduces entropy in the flow of 
information). Our objectives for the models were to explain 
the results of a previous round of psychoacoustic perception 
experiments using auditory stimuli only, and to make
predictions as to how including a visual stimulus, in this 
case lip aperture (vocal tract variable), would affect 
response accuracy across different groups, which we will 
corroborate in future psychoacoustic/visual tests.  We 
discuss the import of our findings in relation to audio-visual 
integration during speech perception, and map future paths 
to address this issue in different populations.   

Keywords: noise, vowel discrimination, auditory cues, 
visual cues, machine learning model, speech perception. 

1. INTRODUCTION 

Crucial to Shannon’s [1] mathematical model of 
communication is the idea that a noise source acts on some 
signal, which subsequently challenges the flow of 
information encoded in that signal. As much holds for 
computationally derived messages as for human speech. 
Essentially, an information source encodes a message that a 
subsequent transmitter converts to a signal by way of some 
channel, in our case an acoustic channel. The receiver 
————————— 
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unpacks the information encoded in the channel(s) in order 
to decode the message intended by the transmitter. Noise, at 
the same time, is intrinsically related to entropy (uncertainty 
or randomness) in that noise degrades the information 
content contained in the message.   
Gibson et al [2] examined linguistic effects and interactions 
when discriminating vowels in two noise conditions 
(computer generated background babble and modifications 
to the signal-to-noise ratio, henceforth SNR). The number 
of background speakers was set from 1-16. Native English- 
and Spanish-speaking adults were administered the same 
test in which the syllables ‘da, de, di, do, du’ appeared on a 
screen while an auditory stimulus of one of those syllables 
was played in the midst of background babble and 
modifications to the SNR, which were applied randomly by 
the MATLAB-based test. Participants were instructed to 
click over the box containing the syllable they heard. 
Stimuli were presented for two speakers, one biological 
female, and one biological male. All routine normalizing 
was performed on the stimuli (duration, volume, etc.), and 
all tests were administered according to standard 
perception-testing protocol (i.e. using professional sound 
equipment, sound-proof booth, quiet environment etc.).  
Schlechtweg et al (unpublished data as of yet) employed a 
similar test modified for children with typical hearing, 
henceforth TH, and their cohorts with cochlear implants, 
henceforth CI, the only difference being that the SNRs were 
set to 0, 6 and 12 dB  and the number of background 
speakers was programmed to a constant 6, in order to 
shorten the test and ensure maximum attention.  
In a tangential study (unpublished data as of yet) measured 
the development of masking release (the capacity to 
differentiate, or release, a target stimuli from its masker) as 
a function of age in typical-hearing children ages 6-12 
(N=35), again using the modified version of the original 
adult version of the test in order to ensure maximal 
attention.  
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Schlechtweg et al (mentioned previously) found that when 
considering all vowels together, the children with TH (77.0 
%) responded, on average, more accurately than the CI 
group (72.6 %), though only slightly. A by-vowel analysis 
revealed a relatively high response accuracy for [a], [e] and 
[i] for both groups. Interestingly, the children with cochlear 
implants answered more accurately than the children with 
typical hearing for [a] and [e]. Discrimination of the high-
back vowel [u], however, proved more taxing for the 
children with CI, who responded less accurately to this 
vowel than (a) they did to all other vowels, and (b) than did 
the children with TH. The children with CI had observably 
lower scores than the TH group in detecting [u] in noise. 
Further, the CI group confused [u] with [o] in ± 45 % of the 
cases in which [u] was presented as the stimulus (these 
results mirror the results in [2] and [4]). As the authors in 
these studies surmise, this confusion of [u] with [o] may be 
a consequence of the fact that [o] and [u] are back vowels 
and therefore have close second formant (F2) values [see, 
e.g., [4, 5]]. Previous studies have shown, for example, that 
individuals with hearing loss tend to confuse vowels with 
the vowel closest to them in terms of first formant (F1) or 
F2 values. Confusion of [o] and [u] has also been shown to 
occur empirically in other languages such as Dutch [see 
[6]], in addition their existing historical alterations in other 
Romance languages such as Catalan, Romanian and 
Portuguese, as well as Northern Peninsular dialects of 
Spanish ([7-9]]. These findings fit nicely into the cluster 
idea [10], in that when confronted with high overlapping 
inter-categorical variation and high intra-categorical 
overlap, a vowel from one category of a cluster can often be 
interchanged with a vowel from an overlapping contiguous 
category (e.g., [o] and [u] overlap in that both are back 
rounded vowels, albeit with differing qualifications in the 
vertical dimension). This concept is buttressed by the 
finding that vowel categories tend to overlap to a greater 
extent for listeners with hearing impairment [10]. To 
account for this, Gibson et al [2 and 3] postulate that the 
third formant (F3) value, which correlates physically to lip 
rounding, and is similar for [o] and [u], may be masking the 
F1 in these cases, obfuscating perceptual access to vowel
height [see, e.g., [4]].   
As for the effects of the specific noise types, Schlechtweg 
and colleagues (unpublished data as of yet) notes that for 
the TH group, the [o]-[u] confusion did not represent a 
dominant pattern, either overall, or for any specific SNR 
parameter. While [o] for [u] appeared in 5 % of the cases 
for the 0 dB SNR, they did so as well in 5% and 8.8 % of 
the cases at the 6 and 12 dB SNRs, respectively (the 
response accuracy for [u] was 60 % (0 dB), 83.8 % (6dB), 
and 78.8 dB (12 dB)) (these figures are also in line with the 

results presented in [2 and 3]). For the CI group, however, 
in almost half of the trials the subjects chose [o] for [u] for 
all SNRs. Moreover, clear differences were observed across 
the individual SNRs. While [o] was selected in 23.8 % of 
the cases  where [u] was played for the 0 dB condition, it 
was chosen in 51.2% and 58.8 % of the trials at 6 and 12 
dB, respectively (the response accuracy for [u] was 31.2 % 
(0 dB), 45 % (6 dB), and 38.8 dB (12 dB)). That is, even 
when there is clearly more signal than noise, the children 
with CI exhibited less accuracy in detecting [u], and 
primarily confused [u] with [o].   
For [2] and [3] results were commensurate with the general 
findings showing confusion in discriminating the rounded 
back vowels [o] and [u] in noise. It is noteworthy that at 0 
dB SNR there was nearly perfect vowel discrimination but 
any errors at 0 dB SNR were almost all due to [o,u] 
confusions. To explain the catholic back rounded vowel 
confusion across all subject groups tested, for the current 
study we performed a detailed acoustical analysis of the 
stimuli (produced by both speakers whom we recorded for 
the stimuli, one biological male/one biological female) in 
order to examine whether there was a physical impetus for 
the misperception. Our analysis showed greater acoustical 
distance, with regard to F1, between the back vowels for the 
biological female speaker than for the biological male, who 
had very close F1 values for [o] and [u] (though not 
overlapping). However, the biological female speaker 
showed closer values for F1 for the front vowels, meaning 
that if acoustic density alone were the motivation for the 
confusion between [o] and [u], the confusion effect would 
be stronger for the front vowels than for the back vowels, 
which does not find support in the data. This observation 
also lends evidence to the idea presented in [2-4], that F3 
may be masking F1, since confusion of the back rounded 
vowels is still relatively high even for the biological female 
stimuli even though there is more acoustic differentiation in 
F1 for the back rounded vowels than for the front vowels. 
Mean values (in Hz) for F1, F2, F3 and F0 (fundamental 
frequency) are given in Table 1 for each speaker. 
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Table 1. Mean formant values (rounded to conserve 
space, in Hz) by speaker (where F=Female and M=Male, 
both biological) for the stimuli vowels [a,e,i,o,u] in 
Spanish /dV/ syllables.  
 

Speaker  Vowel  F1  F2  F3  F0  
F  [a]  973  1899  2826  230  
  [e]  473  2474  3046  219  
  [i]  421  2801  3203  223  
  [o] 569  1381  2964  290  
  [u] 428  1161  2939  230  
M  [a]  692  1498  2633  118  
  [e]  419  1994  2521  115  
  [i]  260  2305  3145  120  
  [o] 413  1108  2696  150  
  [u] 413  1322  2854  117  

  
F1/F2 (where ‘/’ means ‘÷’) and F1/F3 ratios were also 
calculated given their importance in vowel 
discrimination (and are offered in Table 2).  In [12], for 
example, the authors showed magnetoencephalographic 
evidence that the auditory cortex is sensitive to formant 
ratios and plays a role in vowel discrimination.   
  
Table 2. F1/F3, and F2/F3 ratios for all stimuli vowels 
by speaker.  
 
Speaker  Vowel  F1/F3  F2/F3  
F  [a]  0.34  0.67  
  [e]  0.16  0.81  
  [i]  0.13  0.87  
  [o]  0.19  0.47  
  [u]  0.16  0.81  
M  [a]  0.26  0.57  
  [e]  0.17  0.79  
  [i]  0.10  0.73  
  [o]  0.15  0.41  
  [u]  0.16  0.81  
  
As can be observed in Table 2, there is only a scant 
difference for the F1/F3 ratio for [o] and [u] (15% and 
16% respectively) for the biological male speaker, while 
the biological female exhibits greater differentiation for 
the F1/F3 ratio for [o] and [u] (19% and 16% 
respectively).  
To account for the general confusion of the back 
rounded vowels across a wide range of subjects, [2 and 3] 
surmised that in absence of a visual input, such as lip 

aperture or jaw angle, which distinguishes [o] and [u] 
(and the other vowel categories), and would otherwise 
serve to reduce uncertainty or entropy, the subjects lack 
crucial information (information flow is essential to 
Shannon’s 1948 model) to which they would else be 
privy in non-laboratory-based settings, that may aid in 
discerning the phonological contrasts for the different 
vowel categories. Against this backdrop, in what 
follows, we present the results of a set of machine-
learning models in an unsupervised environment based 
on K-means clustering in order to address the research 
question as to how visual information and acoustical 
information interact to better predict phonological 
contrasts across a wide range of subjects. The parameters 
and model design are reported in full in the sections that 
follow.    

2. CLUSTERING MODELS 

2.1 K-means clustering  
 
K-means clustering is an unsupervised method that 
clusters unlabeled data. It is a method of vector 
quantization and is one of the most popular unsupervised 
methods in data mining. It requires a fixed number of 
clusters (k) and features. Based on the input, the 
algorithm iteratively calculates the positions of the 
centroids while keeping them as small as possible. The 
goal of this algorithm is to minimize the sum of the 
squared Euclidean distances of each point to the closest 
cluster. To implement our models we used scikit-learn's 
[13] K-Means class in Python.   
  
2.1.1 Model parameters and evaluation metrics  
  
The use of an unsupervised environment is grounded in 
the intuition that a learner (say an infant learning vowel 
categories) has no a priori reason to assume any 
underlying categories (hence they learn categories from 
the data). The first model was built on randomly 
generated data (N=200,000; 5 vowels x 20,000 trials x 2 
speakers) using the productions from the speakers as the 
baseline whom we recorded for the stimuli for the 
psychoacoustic tests presented in Section 1 [2 and 3]. 
We used F1, F2, F3 and F0 as the variables most likely 
to distinguish vowel categories (though, we do not 
discard using ratios F1/F3 and F2/F3 and modulations of 
envelope amplitude, ΔE, for future models).  Random 
values were computed using one standard deviation 
point above and below the mean, which is a conservative 
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measure given the nature of formant value variation 
across contexts. The second model was trained on the 
acoustic data in addition to being fitted with visual data, 
maximum lip aperture to be specific. Visual data were 
collected for both speakers whose data served for the 
acoustical model. Visual recordings (videos) were made 
using personal mobile devices and converted to mp4 
files. The mp4 files were converted to motion capture 
using Python, as shown in Figure 1 (left), where each 
image along the x-axis represents an image at every ± 2 
ms timestamp in the video file (motion capture frames 
were generated at an interval of 30 frames per second). 
We then traced the dynamic movement across frames in 
order to find maximum lip aperture. Pellets were placed 
on the upper and lower lips to facilitate the collection of 
quantitative measures (in mm) in ImageJ, as shown in 
Figure 1 (right).  In order to perform these measures, 
pixels were scaled to physical measures by registering 
images of a known distance (using a ruler) to the number 
of pixels in the same image. We measured from the 
bottom-most edge of the superior lip pellet to the top-
most edge of the inferior lip pellet. We report the values 
in mm in the following Table 3.  
To add noise to the models, we randomly added white 
noise as an additional variable to the acoustic data by 
using Normal Gaussian distribution, where:  
 

 
 
For our experiments, we defined the spectral noise 
density unity as 1 Hz. 
  

   
 
Figure 1. (Left) Video (top panel) of speaker producing 
a syllable /da/. In the bottom panel the video was parsed 
into individual motion capture frames at every 2 ms 
timestamp. (Right) Static image of motion capture frame 
where maximum lip aperture was calculated.   
 
 
 
 
  

Table 3. Maximum lip aperture in mm for the individual 
vowels by speaker.  
 
  a  e  i  o  u  
Female   10.35   9.36   7.61  6.03   2.22   
Male  7.77   6.98   12.08   12.22   3.65  

  
Before constructing the models, all variables were 
standardized by removing the mean. All models were 
built using the same parameters: the initialization 
method is defined as "K-means++” (the first clusters are 
selected based on empirical probability distribution 
instead of using a random selection), the maximum 
number of iterations was set to 300, and the K-means 
algorithm used was Lloyd’s algorithm [14]. Each model 
ran 10 times with different centroid seeds. To determine 
the most appropriate number of k, we used the elbow 
method. This is a common method to identify suitable 
cutoff values, since it suggests that values passed the 
elbow of the curve would not add more information. It 
consists of iterating over different k values and plotting 
the sum of squared distances at each cluster (Figures 2-
3). In our experiments, we iterated the number of 
clusters from 2 to 10. The most suitable number of 
clusters is selected based on the elbow of the curve.  
Furthermore, after identifying the most suitable number 
of clusters, we performed dimensionality reduction. This 
technique has been proven to increase the performance 
of a clustering algorithm [15] since it reduces data 
complexity. To do so, we employed Principal 
Component Analysis (PCA). This statistical method 
consists of transforming the data in an unsupervised 
manner into a smaller number of dimensions while 
conserving the data information. The simplified 
dimensions are referred to as components. Each 
component is the result of the linear combination of all 
variables. The first component consists of the normalized 
linear combination of those variables with the highest 
variance. Usually, the first components are able to 
contain all variance from the data. To identify the most 
suitable number of components in our dataset, we built a 
K-means model for the first component and for the first 
and second components.   
Moreover, since the most suitable number of clusters 
might not be the same as the number of vowel 
categories, we repeteated the PCA analysis and trained a 
K-means model by setting k as the number of vowel  
categories (n=5).  
Results of the models were evaluated based on adjusted 
rand index (ARI) and silhouette score. The silhouette 
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score calculates how well each cluster is distinguished 
from the other clusters according to the ground truth. 
The score is useful to evaluate a clustering algorithm. It 
ranges from -1 to 1, where 1 refers to clusters being 
perfectly distinguished from each other and -1 means 
that all clusters were assigned wrongly. The ARI 
expresses the number of correctly assigned clusters. This 
metric requires ground truth values to measure the 
similarity of the different clusters with the true labels. It 
ranges from –1 to 1, for which the closest to 1 refers to a 
better clustered data. A score close to 0 indicates random 
performance. Silhouette score calculates how distinct 
clusters are from each other. A score of 1 corresponds to 
perfectly distinguished clusters.  

3. MODEL OUTCOMES 

3.1 Elbow method  
  
Figure 2 shows that for the acoustic data the number of 
sum of squared distances decreases and creates a clear 
elbow in the cluster 6. For the visual and acoustic data 
(Figure 3), the elbow in the curve is shown until cluster 
7. Therefore, for the acoustic data, models are built using 
6 clusters and for the acoustic and visual data, models 
employ 7 clusters.  
  

 
 
Figure 2. Sum of squared distances for each number of 
clusters for the acoustic data.  
  

 
 

 Figure 3. Sum of squared distances for each number of 
clusters for the acoustic and visual data.  
  
3.2  Acoustic data  
  
Table 4 shows the results obtained when building a 
model with two different components and two different 
clusters. As expected, the number of clusters identified 
from the elbow method shows the best-performance.   
Results using 6 clusters and the first component, or the 
first two components are similar for the ARI score.  
The highest silhouette scores are obtained when using 
the first component, which suggests that the first 
component is more suitable to clearly distinguish the 
different clusters. Figures 4 and 5 illustrate how the true 
labels are clustered using component 1 and component 
2.   
  
Table 4. Silhouette and ARI score using different 
number of components and number of clusters based on 
the elbow method and the number of ground truth 
labels.  
Number of 
clusters  

Number of 
components  

Silhouette 
score  

ARI  

6   

Comp. 1   0.64  0.34  

Comps. 1 and 2  0.59  0.35  

  
5   

Comp. 1  0.68  0.26  

Comps 1 and 2  0.58  0.25  
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Figure 4. Figure showing the 5 predicted clusters against 
the true labels in component 1 and component 2.   
  

  
 
Figure 5. Figure showing the 6 predicted clusters against 
the true labels in component 1 and component 2.  
  
3.3 Acoustic and visual data   
  
Table 5 shows the results obtained when building a 
model with two different components and two different 

clusters for the acoustic and visual data. Using the first 
two components with 7 or 5 clusters shows the best ARI 
scores. The best distinguished clusters (silhouette score) 
are obtained using only the first component. Figures 6 
and 7 illustrate how the true labels are clustered using 
component 1 and component 2.   
  
Table 5. Silhouette and ARI score using different 
number of components and number of clusters based on 
the elbow method and the number of ground truth 
labels.  
 
Number of 
clusters  

Number of 
components  

Silhouette 
score  

ARI  

  
7  

Comp. 1   0.81  0.43  

Comps. 1 and 2  0.73  0.45  

5  
  

Comp. 1  0.82  0.38  

Comps. 1 and 2  0.64  0.45  

  

  
   
Figure 6. Figure showing the 5 predicted clusters against 
the true labels in component 1 and component 2.  
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Figure 7. Figure showing the 7 predicted clusters against 
the true labels in component 1 and component 2.  
  
Results indicate that using the acoustic data clusters the 
different vowel categories with a similarity (ARI) of up 
to 0.35 (Table 4). When examining the predicted clusters 
compared to the vowel categories (Figure 4), one can 
notice that [e] and [i] are clustered together but [i] is also 
clustered independently.  
Moreover, it is important to note that [a], [o] and [u] are 
grouped together when only 5 clusters are used. 
However, when a model with 6 clusters is built, [a] is 
clustered independently while [o] and [u] are still 
aggregated.   
When visual data are added to the acoustic data and 7 
clusters are used, the confusion between [o] and [u] is 
resolved by identifying two separate clusters for [o] and 
[u] respectively (as illustrated in Figure 5). We surmise 
that one cluster refers to the male samples and the other 
to the female ones. However, when 5 clusters are used, 
the confusion between [o] and [u] remains as in the 
acoustic data. Regarding [a], [e], and [i], Figure 5 shows 
that these three categories are confused and mixed in 
three clusters.  
Overall, our results indicate that adding visual data 
enhances the clustering algorithm, achieving an ARI of 
up to 0.45 when comparing the similarity of the 
predicted clusters to the ground truth labels (vowel 
categories).  
 

4. DISCUSSION 

We postulated, based on the results of our previous 
psychoacoustic perception tests, that the incorporation of 
visual information into an acoustic stimulus would aid in 
the recognition of vowel categories in the face of a noise 
source. The results in section 3 corroborate our 
underlying assumption that visual information, in 
tandem with an acoustic stimulus will increase response 
accuracy across subject groups. The results show that 
our models better classify vowels when a visual 
stimulus, in this case maximum lip aperture, 
accompanies the acoustic stimulus.  This is an intuitive 
finding in that it suggests that humans may call on any 
informational channel at their disposal in order to fill in 
the gaps when a message is perturbed by noise. 
However, a few questions remain with regard to how the 
auditory and visual information interact, which we will 
deal with below.  
The models we presented are basic prototypes that 
explain back vowel confusion across a wide range of 
subjects. Nevertheless, the models did not reflect two 
fundamental assumptions, which we will address in 
future studies. On one hand, the model did not take into 
account the fact that one of the groups (children with CI) 
receive a distorted input signal because of the device that 
would affect their learning and classification of 
categories. In future rounds this must be programmed 
into the model because the distorted input affects how a 
listener represents phonological classifications and their 
subsequent access. We propose here that this can be 
done with more sophisticated models, such as 
convolutional neural networks that can be trained on 
audio data, by computing the short-time Fourier 
transform. The way to simulate hearing impairment, 
thus, may be to reduce or alter the frequency spectrum of 
the spectrogram like CI programming.  
Additionally, we did not take into account the fact that 
non-native speakers of Spanish, such as the EN-L1 
group in [2] and [4] do not start learning from zero, as 
our model does. These subjects already have 
phonological categories from their first language 
programmed into their cognition. The real question here 
is how do speakers that already have first-language 
phonological categories codified in the mind map non-
native stimuli to phonological categories in the face of 
different noise sources. This can be dealt with in future 
rounds of testing by the creation of a new model which 
is first trained on English vowels and later asked to 
classify non-native categories in noise.  
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Another question for future rounds of inquiry will be to 
ask how much information from the visual/auditory 
signals are being used by any one group to classify 
phonological categories. We assume that the relationship 
between the two information signals is dynamic (i.e. it is 
modulated as a function of time and context). That is, the 
information listeners extract from the auditory and visual 
information is not constant, and therefore not easily 
measurable.  
An additional assumption is that the interaction between 
the visual and audio signals is modulated by the state of 
the original system, that is, the degree to which these 
informational signals interact is dependent on the system 
in which they operate (i.e., we would expect different 
levels of integration for children with CI than children 
with TH etc.). We plan to address these questions in 
future electrophysiological studies using 
electroencephalography data (EEG) and eyetracking.  
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