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ABSTRACT

The estimation of the absorption coefficients of the bound-

ary surfaces in a room is important in room acoustic

engineering. This research presents a machine learning

method learns from simulated data to estimate the room

dimensions and frequency-dependent absorption coeffi-

cients. We employ multi-task convolutional neural net-

works for inferring the frequency-dependent absorption

coefficients and the dimensions of the room from transfer

functions calculated by wave-based room acoustic meth-

ods. The proposed method provides reasonably accurate

estimation of the boundary conditions and dimensions.

Keywords: Machine learning, absorption coefficient,

room dimension, room transfer functions.

1. INTRODUCTION

Humans cannot estimate a room’s dimensions and sound

absorption configuration via hearing only. Sound trav-

els so fast, and therefore the reflection overlap is heavy

in rooms even within a short time from a sound gener-

ation. Knowing the sound absorption distribution is not

considered important on a daily basis, but it gets more

important in practical room acoustic engineering works.
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For example, acousticians would need to simulate several

absorption configurations to find the optimum treatment

of absorbers and scatters in a refurbishment/intervention

project.

There are several methods proposed to inversely es-

timate the room geometry from room impulse responses

(RIR) [1]. The main idea is to use lower-order specular

reflections to estimate the times and directions of arrivals.

Utilizing multiple source-receiver pairs makes it easier to

estimate the geometry of a room [2, 3]. Generally, these

analyses are conducted in the time domain mainly using

simulated reflectograms from geometrical acoustics sim-

ulations, e.g., the image source method, where waves are

simplified as a bundle of straight rays. Therefore, wave

phenomena, such as diffraction and interference, are often

neglected in such data.

In contrast, a transfer function (TF) in the frequency

domain, the Laplace transform pair of a corresponding

RIR, includes precise information about the amount of ab-

sorption via two different ways: a frequency shift from

the theoretical natural frequency and the broadness of the

peaks. The primary focus of this paper is to estimate the

low to mid-frequency absorption configuration and extract

the room dimensions from TFs via machine learning ap-

proaches.

2. DATASET GENERATION

The absorption coefficients in room acoustic engineer-

ing are typically necessary up to 4 kHz according to

ISO 3382-1 [4]. However, due to computational limita-

tions, we limited the frequency range for the TF dataset to
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250 Hz octave band with 0.5 Hz frequency resolution. The

size-corrected random-incident absorption coefficients of

each surface over three-octave bands, 63 Hz, 125 Hz, and

250Hz, as well as the length, width, and height are chosen

as a label series for one room transfer function.

The Latin hypercube sampling is used to randomize

the sources and receivers in a room to ensure a well-

distributed sampling of the room’s transfer function as

shown in Figure 2, we use 6 sources corresponding to

125 receivers. We used two types of porous materials. A:

Ecophon Akusto Wall-A (40 mm glass wool with a spe-

cific flow resistivity of 47,000 Ns/m4) and B: Ecophon

Industry Modus (100 mm glass wool with a specific flow

resistivity of 10,900 Ns/m4). The absorption coefficient

of the remaining concrete surfaces is set to 0.029, 0.048,

0.043 for the 63 Hz, 125 Hz, and 250 Hz octave bands, re-

spectively. In Figure 1, a rectangular room is shown with

numerical labels assigned to the surfaces. To generate the

training data, material configurations are varied according

to Table 1, with a dash indicating the concrete surface.

The room size variation is shown in Table 2, following

guidelines for low-frequency optimization, as detailed in

Ref. [5]. Each configuration corresponds to 7 room sizes,

6 sources, and 125 receivers, resulting in 5,250 TFs.

Figure 1: Surface number assignment.

The dataset is generated by the commercial software

COMSOL® Multiphysics with MATLAB® LiveLink™ by

a single Intel Xeon Gold 6226R CPU. Dataset augmen-

tation is a standard practice in machine learning. In

this study, we utilized loudspeaker frequency response to

augment a simulated dataset, resulting in two datasets:

”Simu.” (pure) and ”Aug.” (augmented). This approach

is expected to enhance the performance machine learning

models.

(a) (b)

Figure 2: Example of the distribution of sources (a)

and receivers (b) in a room.

3. NEURAL NETWORKS STRUCTURE AND
TRAINING STRATEGY

In this paper, we employ the standard ResNet V2 archi-

tecture as our backbone model, as outlined in Ref. [6],

due to its exceptional performance in optimizing the loss

function [7]. As noted in Ref. [8], increasing the depth of

neural networks can reduce test error; however, the error

begins to rise beyond a specific threshold. Therefore, it is

essential to align the network’s depth with the problem’s

complexity, therefore, we decided to use ResNet18.

The activation function for the absorption coefficient

outputs in each layer is chosen as the sigmoid function,

providing results in the range of zero to one, aligning with

the definition of the absorption coefficient. The activation

function for the room dimension output layer is the recti-

fied linear unit (ReLU), resulting in outputs between zero

and infinity. The loss function is comprised of two compo-

nents: the absorption coefficient and the room dimension,

as detailed below:

L(θ) = λd

Nd∑

i=1

(y
(i)
d −fθd

(x))2+

Nf ·Ns∑

j=1

λa
(j)(y(j)

a −fθa(x))
2.

(1)

Here, λd represents the weight assigned to the room

dimension estimation task, while λa signifies the weight

of the absorption coefficient for each frequency band and

surface. Nf and Ns denote the number of frequency bands

and surfaces, respectively. x corresponds to the input TF,

while yd and ya indicate the associated room dimension

and absorption coefficient labels.
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Table 1: Material assignment of each surface.

Surface 1 2 3 4 5 6 Surface 1 2 3 4 5 6

Config 1 A - - - - - Config 15 - A - - A -

Config 2 B - - - - - Config 16 - B - - B -

Config 3 - A - - - - Config 17 A - - - - A
Config 4 - B - - - - Config 18 B - - - - B
Config 5 - - A - - - Config 19 A - - A - A
Config 6 - - B - - - Config 20 B - - B - B
Config 7 - - - A - - Config 21 A - - B - A
Config 8 - - - B - - Config 22 B - - A - B
Config 9 - - - - A - Config 23 - A A - A -

Config 10 - - - - B - Config 24 - B B - B -

Config 11 - - - - - A Config 25 - A B - A -

Config 12 - - - - - B Config 26 - B A - B -

Config 13 - - A A - - Rigid - - - - - -

Config 14 - - B B - - Summary 8 8 8 8 8 8

Table 2: Aspect ratio of the room.

Room Ratio Length(m) Width (m) Height (m) Area (m2) Volume (m3)

1:1.11:1.67 3.0 4.5 2.7 13.50 36.45

∼Bolt (2:3:5) 4.0 6.75 2.7 27.00 72.90

∼Louden (1:1.4:1.9) 3.8 5.15 2.7 19.47 52.84

∼Cox(1:1.56:1.86) 4.2 5.0 2.7 21.00 56.70

1:1.33:2.66 4.0 8.0 3.0 32.00 96.00

1:1.67:1.67 5.0 5.0 3.0 25.00 75.00

1:1:1.3 4.3 3.3 3.3 14.19 46.83

In this research, we construct the neural network us-

ing the TensorFlow framework (Figure 3). We applied

training parameters such as an 80:20 split for training and

testing data, a batch size of 32, and 200 epochs. The

Adam optimization algorithm was employed with an ini-

tial learning rate of 1× 10−4. We set the number of filters

in the input layer to 64, while maintaining the remaining

network structure according to the residual network prin-

ciples. To prevent overfitting, we implemented batch nor-

malization post-convolution [9] and utilized Kaiming ini-

tialization for weight initialization [10]. All experiments

were conducted using the NVIDIA Tesla V100 GPU.

Determining loss weights in Multi-task learning

(MTL) remains an active area of investigation. It is crucial

to acknowledge that the overall loss is dominated by the

small gradient term in MTL. Therefore, more challenging

tasks should be assigned with larger loss weights to bal-

ance the overall loss. In this study, we considered room di-

mension estimation a simpler task than absorption coeffi-

cient estimation, a more abstract feature of the room trans-

fer function and consequently more challenging to predict.

We also observed that predicting the absorption coefficient

became more difficult with increasing frequency. In our

initial experiment, we allocated a uniform loss weight to

all tasks and removed the room dimension branch to avoid

potential disturbances.
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Figure 3: Multi-task residual networks for absorp-

tion coefficient and room dimension estimation.

4. RESULTS AND DISCUSSION

In this section, we assess the performance of the networks

on test sets, monitoring the loss associated with two cate-

gories of tasks under varying training strategies. This loss

quantifies the discrepancy between the network’s predic-

tions and the actual ground truth labels, where a lower loss

indicates a good prediction of the network.

As depicted in Figure 4, the loss of the absorption

coefficient increases almost linearly with the frequency

bandwidth, in accordance with the constant percentage

bandwidth rule. The neural networks aim to provide

equally precise predictions for all absorption coefficients

regardless of the frequency band. Therefore, it is impor-

tant to balance the absorption loss by prioritizing difficult

tasks. One approach is to adjust the weights for the ab-

sorption coefficient loss proportionally to the frequency

bandwidth. Specifically, the weight of the neighboring

higher-frequency octave band is twice as high as that of

the current octave band, different from the uniform dis-
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Figure 4: Absorption coefficient loss as a function

of frequency for the test dataset.

tribution, this strategy is named as frequency-dependent

weights (FDW) in Figure 5. The loss metric is calculated

as Δα = 1
Nf ·Ns

Ns∑
i=1

Nf∑
j=1

(αest
i,j − αtrue

i,j )2. The application

of the FBW method results in a reduction of the loss met-

ric. Furthermore, the mixed dataset (Simu. and Aug.) out-

performs the single dataset.
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Uniform
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Uniform

Simu.+Aug.
Uniform
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Figure 5: Comparison of training strategies of ab-

sorption coefficient branches.

Employing the optimal training strategy of absorp-

tion coefficient branches, we further examine the impact

of room dimension branch weight λd in reference to the

sum of the individual weights of λa. The results of this

analysis are illustrated in Figure 6. The loss metric is de-

fined as ΔL = 1
Nd

Nd∑
i=1

(Lest
i − Ltrue

i )2. While a small

value of λd may provide a reasonably precise estimation

of the room dimensions, an increased λd emphasizes the

room dimension regression task, thereby yielding a more

accurate estimation.

5. CONCLUSION

This study evaluates the feasibility of a ResNet archi-

tecture to estimate the room dimensions and frequency-

independent absorption coefficients, using measured
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Figure 6: Impact of room dimension branch weight

λd.

transfer functions up to the 250 Hz octave band. The

ResNet18 shows promising results in estimating the dom-

inant directions for the energy decay, but precise estima-

tions of the absorption coefficients of a parallel surface

pair were not guaranteed. In this study, the training data

generation took 99.66% (approximately 40 hours per con-

figuration), and the model training took 0.34% of time

(approximately 4 hours). Once the model has been trained

and loaded, one inference takes around 20 ms.

Moving forward, our intention is to enhance the

model’s resilience by incorporating time domain infor-

mation and physics constraints, thereby reducing reliance

solely on frequency domain information. Our ultimate

goal is to apply this refined method to actual measurement

data. Though we may encounter unpredictable variables

inherent in real-world scenarios, such challenges provide

valuable opportunities for improvement.
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