
10th Convention of the European Acoustics Association
Turin, Italy • 11th – 15th September 2023 • Politecnico di Torino

IDENTIFICATION OF MULTIPOLE SOURCES WITH NEURAL
DECONVOLUTION

Thiago Lobato1∗ Roland Sottek1 Michael Vorländer2

1 HEAD acoustics GmbH, 52134 Herzogenrath, Germany
2Institute for Hearing Technology and Acoustics, RWTH Aachen University, Germany

ABSTRACT

Beamforming techniques for localizing sound sources
often assume the radiation of multiple monopoles and use
a simplified transfer function between the source and the
array. While this approximation provides satisfactory re-
sults in many practical cases, it reaches its limits for more
complex sources. By considering multipole sources such
as dipoles, we can improve the results; however, the orien-
tation of the dipoles must be known a priori. In this paper,
the neural deconvolution method, which employs neural
networks to help deconvolve the beamforming map, is
extended to include multipole sources. This is done by
developing an extended version of the DAMAS algorithm,
which we call DAMAS-MS, where MS stands for ”Mul-
tiple-Sources”, and by applying a neural grid compres-
sion technique to make the whole process run fast enough
for real-time applications. We show that it is possible to
obtain reasonable estimates of source strength, location
and radiation type without prior knowledge of the dipole
orientation, and fast enough for real-time applications.

Keywords: Beamforming, Deconvolution, Neural Net-
works, Multipole, Neural grid compression.

1. INTRODUCTION

Beamforming techniques are widely employed to localize
sound sources and quantify their strengths [1–4]. Typ-
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ically, a grid of potential source directions is defined
and unwanted directions are filtered out to determine the
strength of each source. The technique must assume
the radiation of the sources, such as considering them
as monopoles [4]. This approximation generally works
well but can fail for complex sources with non-monopole
directivity [5, 6]. If the complex directivity pattern of the
source is known, the method can still be effective [5, 6].
However, as we often lack knowledge about the source
itself, a ”chicken and egg” problem arises. This is be-
cause the directivity cannot be known without quantify-
ing the source, and the source cannot be quantified with-
out knowing its directivity. An alternative is to calculate
various predefined sources and use the strongest one [6].
However, this approach is computationally intensive since
it involves calculating various full beamforming maps and
disregards cases where multiple sources with different
propagation types may be present on the map.

To address this challenge, we extended the deconvo-
lution technique called DAMAS [7], originally developed
for monopoles, to accommodate sources with multipole
directivities. This expansion requires solving a linear sys-
tem that is highly ill-posed and computationally expen-
sive, making it difficult to implement in practice. We over-
come this difficulty by applying an extended neural grid
compression as proposed in our recent work [8], which
sometimes reduces the size of the linear system to be
solved by more than 99%. This enables the development
of an efficient approach to identify multipole sources.

2. MULTI-DIRECTIVITY BEAMFORMING

2.1 Classical beamforming

The main approach for beamforming is the delay-and-sum
algorithm [9], which exploits the differences in delay and
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amplitude between microphones in an array to filter out
unwanted directions and accurately characterize sources.
The starting point of the algorithm is the effect of a sin-
gle source from direction i on the pressure at an array of
microphones, as shown in Eqn. (1):

pi = ai · gi (1)

where ai is the source strength, pi is the Mx1 com-
plex pressure vector in the frequency domain, radiated
from the single source at direction i to allM microphones
in the array, and gi is aMx1 vector with the transfer func-
tions between the source and the microphones. This trans-
fer function determines the radiation model we use, which
we will discuss in the next section. First, we continue with
the derivation of the beamforming, which aims to identify
auto strengths of the source Ai = |ai|2 at each direction i
from a grid of directions I . To achieve this, we can apply
the following formula:

|ai|2 ≈ Ãi = 0.5 · gHi ppHgi
|gi|4

= wH
i Cwi (2)

For a grid of directions I , this can be written as:

Ãi = Ai +

I∑
j=1,j ̸=i

Aj |gH
j wi|2 (3)

Here, C is the MxM signal cross-spectra matrix, p
is the Mx1 measured pressure on the array, which is the
sum of all pi, wi is the Mx1 normalized steering func-
tion, Ãi is the least-squares solution for direction i, and
(·)H stands for the conjugate transpose. Eqn. (3) presents
the relationship between the real strength Ai and the esti-
mated strength Ãi. Ideally, the sum term on the right side
which represents the interference of the unwanted direc-
tions should be minimized.

2.2 Deconvolution

A method to improve the beamforming results and re-
duce the strong interference in Eqn. (3) is deconvolution,
which removes the influence of the array on the source.
One approach is the DAMAS method [7], which models
the cross-spectra matrix C as a sum of incoherent sources
from each direction I . Each source has its own contribu-
tion, Cmod,i, as shown in Eqn. (4).

Cmod,i = Ai · gig
H
i (4)

The full matrix is the sum of the individual contribu-
tions:

Cmod =

I∑
i

Cmod,i (5)

Substituting this in Eqn. (2) yields Eqn. (6).

Ãi =

I∑
j

Aj ·
gH
i gjgHj gi
|gi|4

=

I∑
j

Aj · Pi,j (6)

From this, a linear system relating the beamforming
pattern and the real source strength can be derived as:

PA = Ã (7)

P contains the IxI point-spread-functions of all grid
directions, A is the Ix1 vector with all real source
strengths, and Ã is the Ix1 vector containing the measured
strengths. This linear system can be solved with a non-
negative Gauss-Seidel method, but it is not fast enough for
real-time applications when using high-resolution grids
and only considers one type of source.

2.3 Multipole Transfer Functions

The transfer functions g are defined based on the type
of source represented, which is often assumed to be a
monopole. However, we can define them to contain dif-
ferent terms of a multipole expansion, such as dipoles and
quadrupoles. The equivalent transfer function gmu,i of a
multipole expansion is defined in Eqn. (8):

gmu,i(k) =

∞∑
n=0

n∑
m=−n

cn,m(k)h(2)n (kri)Yn,m(θi, ψi)

(8)
in which Yn,m(θi, ψi) is the spherical harmonic of

order m and degree n at the given direction, h(2)n is the
spherical hankel function of second kind, k is the wave
number and cn,m are the multipole coefficients that define
the radiation. We can merge these components into a to-
tal of N individual transfer functions and define a MxN
transfer function matrix G in which each column Gk is
the transfer function of a particular radiation term. In this
way we can defined monopoles, dipoles, quadrupoles, etc.
Instead of using single terms, we obtain better results by
defining combinations of coefficients representing a par-
ticular source type. This allows us to consider complex
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higher order radiation terms in the calculation. In this
work, we consider combinations representing a ”vertical”
and a ”horizontal” dipole.

2.4 DAMAS with multiple transfer functions per
direction (DAMAS-MS)

We can easily expand the DAMAS method to consider
multipole sources as well. To illustrate this, we rewrite
Eqn. (5) as Eqn. (9).

Cmod =

N∑
k=1

I∑
i

Cmod,i,k (9)

In which:

Cmod,i,k = Ai,k · Gi,kGH
i,k (10)

Cmod,i =

N∑
k=1

Ai,k · Gi,kGH
i,k (11)

Here we basically say that each direction can have
more than one component, but that all cross-terms are
0. We make this assumption because this work is a first
proof of concept of the method, although we could cal-
culate each individual cross-term with a significant in-
crease in computational complexity. Similar to the regular
DAMAS, this result can be replaced in Eqn. (2) to obtain:

Ãi =

N∑
k=1

I∑
j

Aj,k ·
gHi Gj,kGH

j,kgi
|gi|4

=

N∑
k=1

I∑
j

Aj,k ·Pi,j,k

(12)

The relation in Eqn. (12) yields the following linear
system:

PmAm = Ã (13)

In which Pm is the expanded Ix(I ·N) point-spread-
function with multiple radiations per point and Am is the
(I ·N)x1 vector containing the amplitude of each source
component. We call this expansion DAMAS-MS, where
”MS” stands for ”Multiple Sources”. One of the most im-
portant decisions is the choice of the function to use for g,
since all other terms will be projected on it. To illustrate
the implications of this choice, we show in Fig. (1) to
(2) the monopole projection of different multipole terms
placed at the origin of the scanning grid. In Fig. (2) we
see that, by using the monopole projection on a dipole we

can have a completely different strength level at the real
source position, and even the positions with the strongest
radiation show values more than 25 dB weaker than the
real source. Fig. (3) shows the result using the correct
projection with the 60 dB strength on the center of the
grid. This illustrates how important it is to know the cor-
rect source type.

One is not restricted to using only one projection, but
the projections of all transfer functions in G can be used.
This can be done trivially by generating the corresponding
linear system in Eqn. (13) for each projection and then
concatenating the matrices and vectors, yielding a square
(I ·N)x(I ·N) matrix Pm and a concatenated (I ·N)x1
vector Ã containing all beamforming maps, while Am re-
mains the same. By considering all projections we remove
some of the ambiguity of the deconvolution approach.
Still, even the original ”smaller” DAMAS system in Eqn.
(7) is already extremely ill-posed [7], so solving Eqn. (13)
directly is cumbersome. Furthermore, the system to be
solved becomes very large and we also need to calculate
N beamforming maps, which can make the method pro-
hibitively expensive, especially for real-time applications.
To address this issue, we combine the DAMAS-MS with
a neural grid compression presented in the next section.
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Figure 1: Projected radiation of a monopole source
with 60 dB strength on the center of the grid using a
monopole transfer function.

2.5 Neural grid compression

We base our work on the neural deconvolution method
presented by Lobato et.al [8] that uses a neural network
to localize the sources and then solves the inverse decon-
volution problem only for the positions where a source is
present. The method can be described by the following
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Figure 2: Projected radiation of a horizontal dipole
source with 60 dB strength on the center of the grid
using a monopole transfer function.
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Figure 3: Projected radiation of a horizontal dipole
source with 60 dB strength on the center of the grid
using a dipole transfer function.

equations: Âm,c = NNLS(Pm,c; Ã) (14)

Â/∈c = 0 (15)

c = {i, k | i ∈ I and NN(Ãi, k) ≥ γ ·max(NN(Ã, k))}
(16)

Here NN is the neural network indicating the proba-
bility that a given source of the expansion term k is present
at direction i, NNLS is a non-negative least-squares
solver, γ controls the sensitivity of the method, and Âm,c

is the estimated strength of every radiation term and c rep-
resents the set of all directions and expansion terms con-
sidered in the calculation, so the subscript indicates that

we use all elements of the array/matrix related to the di-
rection/expansion term pair. We then sum the mask of
all components to obtain a single mask with all positions
with sources. In this case, we use only the beamform-
ing map projected onto the monopole transfer function as
input for the network. This approach allows us to very
efficiently obtain a grid with sources that is often more
than 100 times smaller than the full grid [8]. With this
compressed grid, we can calculate the additional beam-
forming projections needed for the full Eqn. (13) only at
the compressed directions, which has negligible calcula-
tion time compared to the beamforming on the full grid,
thus obtaining all the necessary projections in roughly the
same time as a single beamforming calculation.

3. METHODOLOGY

We used a similar raw U-Net as presented in [8], now
with N outputs in the last layer to account for all source
terms. We train the network with an encoder-decoder type
of loss. The encoder is the U-Net neural network and the
decoder is the linear system in Eqn. (13). The full loss or
the method is defined as:

L(A, Ã) =
1

N
·

N∑
k=1

Eenc(NN(Ã, k),Am,k,bi)

· (1 + λ · Edec(PNN(Ã, k),PAm,bi)) (17)

where the suffix bi indicates a binarized vector in
which all values above 0 are set to 1. We set λ = 0.01
and use the point-spread-function P of a monopole pro-
jection independent of the source type for simplification.
The encoder loss is:

Eenc(NN(Ã),Abi) =
1

N · I

N∑
k=1

I∑
i=1

(−w · Am,i,k,bi·

log(NN(Ãi,k))+(1−Am,i,k,bi)·log(1−NN(Ãi,k, k)))
(18)

where w is a weighting for positive classes, that needs to
be high, otherwise the network will predict mostly zeros,
since we have mostly sparse sources. Here we set w =
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N · 100 = 300. The decoder loss is defined as:

Edec(PNN(Ã),PAm,bi) =√√√√ 100

N · I
·

N∑
k=1

I∑
i=1

(
log10

(
PNN(Ãk, k)

PAm,k,bi

))2

(19)

To train the network, we generated the following dis-
tribution of sources:

• 1 to 10 uniformly placed sources, where each
source has only one uniformly chosen expan-
sion term (monopole, horizontal dipole, or vertical
dipole) producing a sine wave of a given frequency.

• Signal-to-noise ratio of the sources between 20 dB
and ∞ dB, where we sampled the noise amplitude
uniformly between 0 and 1 times the strength of the
lowest source on the grid.

• Source dynamic range of maximum 40 dB, where
we uniformly sampled for each source amplitude
dB values between -40 dB and 0 dB and converted
them to linear amplitudes.

• The normalized (maximum equals 1) linear beam-
pattern for the selected array in the defined grid is
used as input to the neural network.

• The target of the neural network is the deconvolved
map with a value of 1 at grid positions to which
sources were assigned and zero otherwise. We as-
sign the sources to the closest grid point while the
generated beampattern is from the exact source lo-
cations.

• The output of the neural network is the probability
of a source at each grid location for each term.

• Uniformly sampled frequency on a Bark scale be-
tween 3.5 BarkHMS and 26.5 BarkHMS [10, 11].

We generated 184000 samples for training and
46000 samples for validation and trained the network
with Pytorch [12]. After the training, we evaluated the
approach against the following metrics using a new test
set with 1000 samples that we had not seen during train-
ing:

• The average dB error of the sources found.

• The distance error between sources, where we
compared the real position of the source term to
a centroid (weighted with the estimated source
energies) of the estimated source positions.

• The percentage of cases in which the prominent
expansion term was correctly estimated by the net-
work.

• The precision and recall of the method.

• The calculation time of the method at inference.

• The confusion matrix of the source type, being the
calculated type identified as the strongest compo-
nent at a direction after deconvolution.

For these evaluation samples, we restricted the num-
ber of sources at each frequency to obtain more realis-
tic results, since, for example, 10 dipoles at 300 Hz is an
unlikely case in real life. This was done by making the
limit of maximum sources on the map a function of fre-
quency by increasing it by 1 for each 1000 Hz. The array
used for the analysis was a spiral microphone array with
56 microphones shown in Fig. (4) for a 64x64 scanning
grid at 3 m from the array, where γ = 0.7 was chosen.

Figure 4: Array used for the experiment.

4. RESULTS

The strength error is shown in Fig. (5). There we have
an average error of 0.5 dB, with most errors (80 %) being
below ca. 4.5 dB. Considering that errors due to an incor-
rect choice of source type can go up to the full strength
of the source and are around 25 dB even if the maximum
apparent source strength is taken into account, we con-
sider this result to be an excellent improvement over
using only monopole transfer functions as typically done
in beamforming.

The distance error can be seen in Fig. (6), and we see
an average error of 0.009 m, which shows that as long as
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Figure 5: dB error of the sources found.

the source is identified by the method, its location is very
accurate.
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Figure 6: Distance error of the sources found.

The next question is how many of the sources are
identified (recall) and how many of them are correct
(precision). The precision is shown in Fig. (7), and the
recall is shown in Fig. (8). We verify that the recall of the
method is about 82% and the precision is 90%. Both val-
ues are very good, indicating that, besides some outliers,
the method can localize the sources of our test distribution
pretty well.

The confusion matrix of the real and predicted source
types can be seen in Fig. (9), in which we defined the
selected type as the source type with the strongest am-
plitude given by the DAMAS-MS. There we see that the
dipoles can be identified with almost perfect accuracy. For
monopoles, the model can identify the correct radiation in
most cases but is still wrong about 25% of the time. Yet,
for the cases in which the method select the wrong source
type, the amplitude errors of monopole sources are not
considerably high, being, on average, around 3.5 dB as

Neural deconvolution (avg): 90.398 %
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100

%

Precision

Figure 7: Precision of the method.
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100
%

Percentage of the sources found (recall)

Figure 8: Recall of the method.

we show in Table 1. This indicates that for cases in which
the method has a wrong identification, the source type has
a smaller importance.

Mon. Dip (horiz.) Dip (vert.)

Mon. 0.44 3.57 3.58
Dip (horz.) - 0.18 0.00
Dip (vert.) - - 0.14

Table 1: Average strength errors based on real source
types (rows) and estimated ones (columns).

At last, in Fig. (10) we see that the calculation time is
very low, about 7 ms on average, so the method can still
run in real-time at least for monopoles and dipoles (less
than 30 ms [8]). The calculation time has some outliers
where the NNLS solver took too long to converge, since
the current problem is considerably more difficult than the
traditional monopole-only inversion. For an application
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Figure 9: Confusion matrix of result. We see
that the DAMAS-MS with neural grid compression
method can distinguish dipoles very well, while be-
ing slightly confused by monopole sources.

within a product that has a maximum allowed latency, a
good trade-off would be limiting the number of iterations
of the solver.

Neural deconvolution (avg): 6.9 ms100

101

102

m
s

Calculation time

Figure 10: Calculation time of the method.

To illustrate how an individual result looks, we show
an example in Fig. (11) along with the network mask in
Fig. (12) and the deconvolution result in Fig. (13). We
verify that the masks contain likely positions of multiple
type of sources, not just for the current source type. The
likely reason for this is that the monopole projection is
ambiguous and thus the neural network is not capable of
perfectly identifying only the correct type of source. How-
ever, this has not prevented the DAMAS-MS from finding
the correct source positions and strengths in this example,
which would be impossible with the traditional monopole-

only DAMAS. In future publications, we may investigate
new approaches to improve the network identification de-
pending on how problematic this is for real sources and
real-time implementation. A straight-forward, but com-
putationally intensive, approach to improve the result is to
use all projections as inputs for the network.
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Figure 11: Monopole projected beampattern of two
dipoles each with 60 dB strength.

1.0 0.5 0.0 0.5 1.0
x[m]

0.5

0.0

0.5

y[
m

]

Deconvolution mask

80.0

82.5

85.0

87.5

90.0

92.5

dB

Figure 12: Neural network mask of pattern in Fig.
(11).

5. CONCLUSION

We have derived an extended version of the DAMAS
method, DAMAS-MS, which accommodates multiple
source types per each direction and employs a neural grid
compression to develop an efficient neural deconvolution
algorithm for estimating the strength of various multi-
pole components without prior knowledge of their direc-
tion, while retaining real-time feasibility. We validated

2149



10th Convention of the European Acoustics Association
Turin, Italy • 11th – 15th September 2023 • Politecnico di Torino

1.0 0.5 0.0 0.5 1.0
x[m]

0.5

0.0

0.5

y[
m

]

Deconvolved dipoles

45.0

47.5

50.0

52.5

55.0

57.5

dB

Figure 13: Deconvolved map with neural deconvo-
lution of pattern in Fig. (11).

our method through simulating various beampatterns with
different source types, yielding good results in terms of
source location and strength estimation. The model was
also able to identify the type of source pretty well in
the case of dipoles, while the monopoles were somewhat
ambiguous for the method. However, the confusion of
monopoles with dipoles does not seem to be so critical
for the cases wrongly identified by the model, since their
average strength error still remained as low as ca. 3.5
dB. Notably, the method remains feasible for real-time
implementation, at least for monopoles and dipoles. Fu-
ture research will focus on validating the method with
higher-order sources and investigating the generalization
of the method for real sources, which is presented in its
monopole-only variant [8].
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