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ABSTRACT

Self-sustained instrument models such as clarinets or reed
organ pipes include two main elements : a strongly non-
linear exciter and a resonator, usually considered linear. In
the past, the resonator has been modelled with either delay
lines or modal decompositions, which are vastly different
approaches. This work formulates objective criteria based
on the self-sustained dynamics of the model, particularly
the nature of its bifurcations, which allow to circumscribe
the domain where the modal and delay lines approaches
yield agreeing results. Notably, artifact fold bifurcations
due to modal decomposition are exhibited in a specific re-
gion of the control parameter space. The dynamical char-
acteristics of the models are studied through numerical
continuation techniques (Harmonic Balance Method and
Shooting) for periodic regimes and bifurcation analysis,
as well as time-domain integration to include transient and
aperiodic phenomena. The criteria introduced can also be
applied when comparing the models to experimental data,
or as tools to assess the performance of a physical model
as a synthesizer.
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1. INTRODUCTION

The physical models of self-oscillating musical instru-
ments, due to their strongly nonlinear nature, can pro-
duce a great variety of signals depending on the actions
of the musician. Potentially, this diversity corresponds to
that of a real instrument, which is among the features that
make physical-based modelling a promising candidate to
numerically emulate a real playing experience. Catego-
rizing and describing the variety of playing regimes at-
tainable with the physical model is therefore an essential
task to bring it as close as possible to real instruments.
However, comparing the physical model to a real instru-
ment poses numerous challenges mostly unrelated to the
dynamics themselves, such as a robust and trustworthy es-
timation of the real system’s parameters. For this reason,
and as a stepping stone towards the ultimate goal of repro-
ducing a real instrument’s dynamics, this paper compares
the dynamics of two physical models differing only in the
way that they model the resonator.

There are several approaches to the physical modeling
of self-oscillating instruments, and notably their resonator
(the vibrating string or air column which is put in mo-
tion by the action of the musician). This paper focuses on
two types of methods: modal methods that represent the
resonator as a combination of oscillators representing its
modes [1,2], and methods which rather model wave prop-
agation and reflection along the resonator using delays and
filters [3]. A particular case of the second category uses
the reflection function linking the backward and forward
wave as the response of the resonator [4]. Each method
has its advantages and drawbacks in terms of implemen-
tation and memory requirements, and with the correct pa-

DOI: 10.61782/fa.2023.0586

4475



10th Convention of the European Acoustics Association
Turin, Italy • 11th – 15th September 2023 • Politecnico di Torino

rameters can produce signals that reproduce experimental
results (most commonly, static regimes [5, 6] or specific
playing techniques [7,8]), rendering them relevant as mu-
sical instrument substitutes in certain contexts.

To represent the dynamics of a system along one di-
mension of the parameter space, a bifurcation diagram is
used. It is obtained by continuation using the shooting
method (see section 2.2), which is applied to a discrete
version of the equations of the model. Therefore, the sys-
tem on which the continuation is performed can be used
with no modifications in a real-time signal synthesizer.

2. PHYSICAL MODEL AND CONTINUATION
METHOD

The model is that of a clarinet-like resonator (lossy cylin-
der) attached to a exciter system composed by a ghost
reed [9] and a regularized version of the nonlinear char-
acteristic [10]

u = ζ
h+ |h|

2
sign(γ − p)

√
|γ − p|, (1)

where dimensionless parameters γ and ζ represent the ac-
tion of the musician through their blowing pressure and
action on the reed respectively (see [11] for more detail).
The dimensionless Kirchoff variables are the pressure p in
the mouthpiece and the flow u entering the mouthpiece.
They relate to the dimensionless forward and backward
waves in the resonator as

p+ =
p+ u

2
(2)

p− =
p− u

2
. (3)

2.1 Time-domain integration

The discretization scheme is based on [12]. In the reflec-
tion function formalism, the resonator is taken into ac-
count using its reflection function r, leading to the back-
ward waves p− being expressed through the discrete con-
volution

p−[n] =

D∑
i=1

r[i]p+[n− i]. (4)

Note that with the simplified resonator used here, this ex-
pression is strictly causal (r[0] = 0).

In the modal formalism, the resonator is represented
by Nm oscillators whose modal pressures pk evolve as a

function of the flow rate u and their past values :

pk[n] = b0,ku[n] + b1,ku[n− 1] (5)
− a1,kpk[n− 1]− a2,kpk[n− 2] (6)

Their evolution is decomposed into a strictly causal part
Vk and an instantaneous part depending on u[n], such that

Vk = b1,ku[n− 1]− a1,kpk[n− 1]− a2,kpk[n− 2]
(7)

pk[n] = b0,ku[n] + Vk (8)

Both formalisms lead to the apparition of the strictly
causal part of the pressure p, which is denoted V and is
expressed in each case as

V =

Nm∑
k=1

Vk or V = 2p−[n]. (9)

The reed is considered to be a simple spring whose
displacement is unaffected by the mouthpiece lay (accord-
ing to the so called ’ghost reed’ hypothesis). The reed
position is

x = p− γ, (10)

The height of the reed channel is given by the regularized
positive part of the reed displacement

h =
x+ 1 +

√
(x+ 1)2 + η

2
, (11)

where η is a regularization parameter set here at η =
10−2. This parameter makes the reed closure phe-
nomenon smoother which has two separate effects: it mit-
igates the grazing phenomena around γ = 0.5 which sim-
plifies the model dynamics, and it limits extremely high
harmonics generation from the contact. The fact that the
contact between reed and mouthpiece is not rigid is co-
herent with the physics of the instrument, where the reed
deforms when it comes in contact with the curved lay of
the mouthpiece. The reed channel height h is used after-
wards to determine the flow u.

The flow entering the mouthpiece is determined fol-
lowing the method presented in [12], meaning that the
nonlinear characteristic [10] is recast into

u[n] = 0.5S∆W (−V1W
2 +

√
V 2
1 W

2 + 4A∆), (12)
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where W = ζh and in the non regularized version,

A∆ = |γ − V |
S∆ = sign(γ − V )

which are replaced here by

A∆ =
√
(γ − V )2 + η (13)

S∆ =
γ − V

A∆
. (14)

The pressure is then computed as

p[n] = Bu[n] + V, (15)

where in the modal formalism B =
∑Nm

k=1 b0,k and in the
reflection function formalism B = 1.

2.2 Continuation method

In order to do a systematic exploration of the regimes
available in the γ parameter range, a continuation method
is used [13]. A shooting method based on the method pro-
posed in [14] allows to retain the time integration formal-
ism exactly as it is used in a real-time formalism. This
ensures that the regimes found in continuation are those
accessible to the end user. Shooting is limited to periodic
regimes, and requires an initialization based on a time-
domain signal which is provided using time-domain inte-
gration. The retained variables are the initial conditions
(in the phase space) and the period of the signal for each
point. The phase space is of dimension 2Nm for the modal
formalism, which accounts for the modal pressures and
their derivatives. It is generally much larger for the reflec-
tion function formalism: although a continuous-time for-
malism would entail an infinite-dimensional phase space,
the discretized version studied here is entirely determined
by D+1 dimensions (all forward wave p+ samples in the
resonator and the current pressure p).

3. COMPARISON OF BIFURCATION DIAGRAMS

3.1 Studied system

For the compared resonators to be as close as possible, we
study a single cylinder with a simplified loss model and
perfect radiation condition [11]. The reflection coefficient
is

R(ω) = exp(−ΓL) (16)

where Γ = jω/c(1 + α1

√
−2j/rv − jα2/r

2
v) and rv =

R
√

ω/(cℓv), ℓv = µ/(ρc), with the viscosity of air
µ = 1.8071.10−5 kg.m−1.s−1 and the density ρ =
1.2047 kg.m−3, and the length of the cylinder is L =
0.3348 m, which corresponds to 86 samples at 44.1 kHz
sample rate. By inverse Fourier transform, one gets

r(t) = H(t− 2L/c)
Dr√
π

exp

(
D2

r

t− 2L/c

)/
(t− 2L/c)3/2,

(17)

where H denotes the Heaviside step function, Dr =

α1
L
R

√
2ℓv
c . The discretized reflection function is r[n] =

r(n/Fs). The Fourier transform of r is then transformed
into an impedance, which is decomposed into modes. The
number of retained samples for the reflection function is
101, at sample rate Fs = 44100 Hz. The comparison be-
low is obtained with a relatively high value of ζ = 0.95
which highlights the differences between the formalisms
and the effect of the modal truncation.

3.2 Result for the reflection function formalism

Bifurcation diagrams are constructed by continuation,
starting with a time-domain integration for γ = 0.9, which
was found to consistently lead to a first register regime –
i.e., whose frequency is around the first resonance peak.
The comparison is made on only the first register branch,
although other branches of solution exist, notably corre-
sponding to second register regimes with fundamental fre-
quency close to that of the second mode. For the sake of
simplicity in this first approach, the stability of the solu-
tions is not taken into account.

The bifurcation diagram of the reflection function for-
malism is represented in Figure 1. The amplitude of the
pressure in the mouthpiece is represented as a function of
the blowing pressure parameter γ. The branch starts at
around γ = 0.4 with a direct Hopf bifurcation and rises
steadily until a saturation point around γ = 2.5 quickly
followed by a turning point, beyond which the branch no
longer exists. The branch then rejoins equilibrium via
an inverse Hopf bifurcation around γ = 1, which cor-
responds to the point where the reed becomes clamped
against the mouthpiece in the static regime. This does not
occur at precisely γ = 1 because of the regularization.
This structure of bifurcation diagram for wind instruments
is classical and found for instance in [15].

4477



10th Convention of the European Acoustics Association
Turin, Italy • 11th – 15th September 2023 • Politecnico di Torino

Figure 1. Bifurcation diagrams for the reflection
function formalism.

3.3 Results for the modal formalism

The bifurcation diagrams of Figure 2 all correspond to the
modal formalism, with a different number of modes Nm.
All diagrams share common features : the location and na-
ture of the Hopf bifurcation at the appearance and disap-
pearance of the oscillations appear consistently at γ ≃ 0.4
and γ ≃ 1 respectively, and the first part of the branch af-
ter the apparition of the oscillation are very similar. How-
ever, things change around saturation for γ > 2. Here,
instead of the single turning point that is observed on Fig-
ure 1, multiple turning points now appear. Their number
is directly dependent on the number of modes taken into
account, with two turning points being added by each ad-
dition of a mode. These double turning points become
closer and closer together as more modes are added. For
example, the addition of the sixth mode between the two
lowest graphs results in two very close turning points be-
ing added just above γ = 2.

In terms of dynamic behavior, these turning points are
quite important, because they mean the system is subject
to multistability and therefore, hysteresis. Indeed, beyond
γ = 2, several solutions coexist and their emergence de-
pends on the systems’ history. The more turning points,
the more solutions potentially coexist, which increases the
possibilities for hysteretic phenomena. However, the more
modes, the closer turning points become, which shortens
the range of control parameter γ on which the hysteresis
is felt, and reduces the difference between the coexisting
regimes along the branch.

Figure 2. Bifurcation diagrams for the modal sys-
tem.

4. CONCLUSION

For a large value of the reed opening parameter ζ, modal
and waveguide based models of clarinet-like instruments
exhibit fundamental differences in the nature of their first
register solutions depending on the blowing pressure pa-
rameter. In particular, the modal formalism yields a bi-
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furcation diagram which features multiple turning points,
absent from its reflection function counterpart. There is
a certain paradoxical evolution in the comparison of the
bifurcation diagrams as one takes into account more and
more modes in the modal formalism: on the one hand,
more modes lead to more spurious turning points appear-
ing on the diagram. On the other hand, these numer-
ous turning points become much closer together, and the
global shape of the diagram appears to be resembling its
reflection function counterpart more and more. This can
lead to a surprising conclusion: depending on the criterion
for comparing dynamical responses, one could deem that
a better approximation of the reflection function behavior
is given by a low number of modes (when simply counting
the bifurcations and comparing their nature) rather than a
high number of modes.
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