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ABSTRACT

This work proposes a novel headphone Active Noise Con-
trol scheme based on the targeted attenuation of sources
that are deemed disturbing for listeners. Initially, a novel
listening test determines the disturbance of distinct noises
that coexist within background noise based on their class.
The listening test is based on such predetermined spa-
tial scenes, binaurally auralized and presented via generic
headphones. The disturbance metric derived from such
test, guides the operation of the proposed headphone
ANC: any complex auditory scene is subsequently an-
alyzed and via a Sound Event and Localization model,
a beamformer is steered to the source deemed to be the
most disturbing. A Time-Domain Beamformer, driven by
a phased array is formed by the two already existing ref-
erence microphones commonly found in the outer shell of
ANC-Enabled headphones and guides the multi-reference
ANC controller in order to provide an improved attenu-
ation of the primary disturbing source, while also signif-
icantly attenuating the background noise field to accept-
able levels.

Keywords: Active Noise Control, Headphones, Sound
Event Localization and Detection, Listening Test, Beam-
forming

1. INTRODUCTION

Even though ANC technology has been around for many
decades, it has only recently been applied to headphones,
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which are the most popular personal listening devices,
with such market expected to further increase in the com-
ing years. The most popular ANC applications utilize the
Filtered-x Least Mean Squares (FxLMS) algorithm and its
extensions [1], boasting high performance, a simple struc-
ture, a robust operation and low computational complex-
ity [2–4]. A common approach between such algorithms
is that they largely ignore the spatial sensitivity of such
systems [5] by attempting to minimize the total external
noise.

To more significantly and robustly attenuate the most
disturbing source a novel Targeted through Beamforming
ANC (TBANC) approach has been proposed in [6], uti-
lizing a Time Domain Beamformer (TDBF). While also
significantly attenuating the background noise field to ac-
ceptable levels, this method is limited in single source sce-
narios.

An extension to the TBANC approach is proposed in
this work, hereby denoted by TBANC-D, where multi-
source scenarios are considered in the presence of dif-
fuse noise. The proposed TBANC-D is able to operate
in scenes where none, one or multiple sources exist. In
the case of multiple sources a single source that is deemed
exceptionally disturbing, guided by a novel Disturbance
metric that determines the severity of distinct noises in a
complex sound field, is more strongly attenuated, while
the remaining sources are attenuated as part of the remain-
ing background noise.
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2. METHODS

The ANC proposed in this work is based upon the assump-
tion that when a listener resides in a complex sound field,
a specific source can exist that is dominant and disruptive
thus being associated with a higher Disturbance metric,
hereby denoted as the primary noise source.

In practice the presence of such a source can be de-
tected by a simple differential energy detector, i.e. when
the level of the noise out of one microphone exceeds a
predetermined threshold as described in [6].

In the proposed approach, the ANC controller can be
mainly focused on the attenuation of the primary noise
source without completely disregarding the remaining
sound field. To achieve the attenuation of the complete
sound field with special focus on the primary noise source,
the Multi-Reference ANC (MRFANC) [7] is chosen to be
extended with the use of a beamformer, in this work real-
ized in the form of a straightforward TDBF.

Additionally, the multi-reference strategy practically
allows the summation of two anti-noise signals. One pre-
dominantly based on the primary noise with the goal of
further attenuating such an undesired stimulus and another
effectively based on the diffuse sound-field.

The proposed method consists of a Sound Event Lo-
calization and Detection (SELD) machine learning model,
TDBF and a MRFANC controller [7]. TBANC-D is
driven by a Disturbance metric, which is derived from a
subjective listening test, and is used to guide the operation
of the proposed ANC scheme. An overview of the pro-
posed system is shown in Fig. 1, with the signals captured
by the left and right microphones being used to extract the
features which are then fed into the SELD model. The
SELD model consequently outputs the Sound Event De-
tection (SED) estimates, showing which source classes are
active in the current scene, as well as the Direction of Ar-
rival Estimates (DOAE), showing the direction of arrival
of each source. Subsequently, the results of the listening
test drive the disturbance system given the SED and DOA
estimates, which finally outputs the DOA of the primary
disturbing source p̂.

2.1 Problem formulation

This work, assumes that the headphone user exists within
a complex sound-field consisting of diffuse, spatially
white noise, along with a primary noise source that emits
a particularly disturbing to the listener signal p(n) and a
less disturbing secondary noise source s(n), as shown in
Fig. 2. In such a scenario, the right ear which is closest to

Figure 1. Block diagram of the proposed TBANC-D
system. p̂ denotes the DOA of the primary disturbing
source.

the primary noise source is assumed to be the Good-Ear
in the sense that the energy of p(n) and s(n) is much more
prevalent in the signal recorded by the respective reference
microphone.

Figure 2. Schematic of the ANC setup formulation.
The primary noise source p(n) is denoted by a red
speaker with its respective DOA given by p̂, while the
secondary source s(n) is denoted by a blue speaker.
Broadband white noise sources, denoted by the gray
arrows, are placed with a 5o spacing in order to sim-
ulate a diffuse noise field.

The signals captured by the two reference micro-
phones mL(n) and mR(n), especially the signal that cor-
responds to the Bad-Ear, are heavily affected by the head
shadowing effect. Since the acoustic shadow is dependent
upon the angle of incidence of the source [8] it can be cal-
culated as the Relative Transfer Function between the 2
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Head Related Transfer Function (HRTF) channels as fol-
lows

HS(ω, θ) =
HRTFBE(ω, θ)

HRTFGE(ω, θ)
(1)

where θ indicates the sound angle of incidence, HRTFGE

and HRTFBE indicate the transfer functions of the Good-
Ear and Bad-Ear respectively.

The noise captured by the reference microphone at
the side of the Good-Ear due to a noise source emitting a
signal ξ(n) (primary or diffuse) is assumed to arrive as-
is with a simple delay, while the noise captured by the
microphone at the side of the Bad-Ear is affected by the
respective Head-Shadow filter calculated by Eq. (1). The
resulting signals are then given by

mGE(n) = ξ(n−N)

mBE(n) = mGE(n) ∗HS(ω, θ)
(2)

where mGE and mBE denote the signals captured by
the Good-Ear and Bad-Ear respectively, ξ(n − N) de-
notes a noise source placed at an angle θ in the hori-
zontal plane arriving with a delay N due to its distance
from the Good-Ear. Depending on the angle θ of the
noise source, the role of the Good-Ear is assumed by
the right-ear for −180o ≤ θ ≤ 0o or by the left-ear for
180o < θ < 0o with 0o being directly in front of the lis-
tener and θ increasing in a counter-clockwise fashion.

2.2 Disturbance System

The aim of the Disturbance System is to determine which
of the active sound events corresponds to the primary
noise source, based on the respective Disturbance met-
rics evaluated by human assessors through a listening test,
and then provide TBANC with the angle of the primary
noise source p̂. The listening test procedure consisted of
24 assessors, all self-reported as normal hearing listeners.
Three noise excerpts from each monophonic recording de-
scribed in Sec. 2.4 with a duration of 10 seconds were
selected for the experiment, that were loudness normal-
ized at -22 LUFS according to [9]. Each of the 9 noise
samples was reproduced via headphones and the assessors
were asked to register the level of disturbance, which cor-
responds to the Disturbance metric of each noise sample
via a multi-stimulus procedure, by answering the ques-
tion ”How disturbing is each noise sample?”. For the
evaluation of disturbance, a 9-point differential scale was
used [10], with the upper limit representing high distur-
bance, while the lower limit representing low disturbance.

Therefore, pairwise comparisons of the disturbance rat-
ings of the sound events will reveal the sound event with
the higher Disturbance metric and hence, define the pri-
mary noise source in different scenarios.

2.3 Neural network features

The Spatial Cue-Augmented Log-Spectrogram for Poly-
phonic SELD (SALSA) feature [11] has been employed
in this work. This feature was chosen due to the high per-
formance achieved by SELD models in the DCASE 2022
challenge utilizing SALSA for microphone recording in-
puts, as is also the case for this work, where sources have
to be detected and localized through the use of signals cap-
tured by the left and right reference microphones mGE

and mBE . Specifically, a more computationally efficient
version of the SALSA feature, called SALSA-Lite [12]
was used.

The 2M − 1 channel SALSA-Lite is comprised by
the M channel log-spectrogram features from the M ref-
erence microphones and the M − 1 channel frequency-
normalized inter-channel phase differences (NIPD) [13],
where M is the number of reference microphones. The
NIPD is given by

Λ(t, f) = −c(2 ∗ π ∗ f)−1arg[X∗
1 (t, f)X2:M (t, f)] (3)

where t and f are the time and frequency indices; c ≈
343ms−1 is the speed of sound and Xi(t, f) is the short-
time Fourier transform (STFT) of the ith microphone sig-
nal.

SALSA-Lite has been shown to be excellent for re-
solving overlapping sound events [12], as is the case in
this work, due to it having an exact TF alignment between
the log-spectrograms and the NIPD channels.

2.4 Dataset

The dataset used to train this work consisted of mono-
phonic recordings from the DEMAND dataset [14] that
were spatialized using the method described by Eq. (2).
Three different monophonic recordings were selected i.e.
3 sound classes, corresponding to a busy café that con-
sisted of babble and cutlery noise along with strong gusts
of wind, a heavy street traffic scene and a relatively quiet
subway station environment. These recordings were se-
lected because they were representative of the environ-
ments that the proposed system would be used in.

The spatialized recordings consisted of two simulta-
neous active sources, each placed in a different azimuth
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angle on the right hemiplane, with a step of 5o and a mini-
mum spacing of 30o. The first 30 seconds of each record-
ing were used to generate the spatialized recordings for the
training stage, while the following 10 seconds were used
for the inference stage, resulting in 36 hours of data for
training and 12 hours for inference. Such recordings con-
sist of the signals captured by the left and right reference
microphones mGE and mBE and are sampled at 24kHz
for the purposes of training the SELD network. Only
cases for the right ear were considered, since resolving the
hemiplane where the sources reside is straightforward, in
using a simple energy based approach as described in [6].
The case where the two sources reside on opposite hemi-
planes is a point of future work.

To further enhance the available dataset 2 data aug-
mentation techniques were applied to all the features dur-
ing training: Random Cutout (RC) [15,16] and Frequency
Shifting (FS) [11]. In RC either random cutout or TF
masking via SpecAugment [15] was applied on all chan-
nels of the input features, by producing a rectangular or a
cross-shaped mask on the spectrograms respectively. For
FS the input features were randomly shifted up or down
by up to 10 bands.

2.5 Network architecture

The CRNN network employed in this work is based on the
SELD network employed in [11], modified to suit the re-
quirements of this work is shown in Fig. 3. The SELD net-
work consists of an encoder block [17], the SED branch is
formulated as a multiclass multilabel classification, while
the DOAE branch is formulated as a one dimensional re-
gression problem.

2.6 Hyperparameters

The STFT window length was set to 512 samples, with
a hop size of 300 samples, a Hann window and 512 FFT
points. A cutoff frequency of 9kHz was selected to com-
pute the features resulting in 192 bins for the SALSA-Lite
features. 8-second audio chunks were used during train-
ing, with an overlap of 0.5 seconds while the full audio
clip was used during the inference stage. The Adam opti-
mizer [18] was used with a learning rate of 0.0003 and the
network was trained for 2 epochs with a batch size of 16.

2.7 Targeted Beamforming ANC

The block diagram for the right-ear controller of TBANC
incorporating the proposed beamforming scheme is

Figure 3. Block diagram of the SELD Network. Im-
age adapted from [11].

shown in Fig. 4 . The signal fed to the control loudspeaker
can be expressed as the summation of the control signals
generated by filtering both the left and right reference sig-
nals mR and mL respectively. Without loss of generality,
the anti-noise signal driving the right loudspeaker is given
by

y′R(n) =yRR(n) + yLR(n)

=wRR(n) ∗BFo(n) + wRL(n) ∗mL(n)
(4)

where * denotes the convolution operation, BFo(n) is the
beamformer output, that drives the wRR adaptive filter,
wRR and wRL are weights of the adaptive control filters,
with wRR corresponding to the filter whose input comes
from the right reference microphone and wRL correspond-
ing to the filter whose input comes from the left reference

Demos of the proposed ANC system can be found at
http://audiogroup.ece.upatras.gr/tools/
TBANCD.php

3630



10th Convention of the European Acoustics Association
Turin, Italy • 11th – 15th September 2023 • Politecnico di Torino

Figure 4. Right ear controller overview of the pro-
posed targeted ANC with beamforming. p̂ denotes
the DOA of the primary disturbing source. An equiv-
alent control algorithm operates independently for
the left ear.

microphone and is used to drive the right ear error sen-
sor. The weight update procedure of the Normalized LMS
controller can be expressed by:

wRR(n+ 1) = wRR(n) + µ
eR(n)x

′
RR(n)

r + ||x′
RR(n)||2

wRL(n+ 1) = wRL(n) + µ
eR(n)x

′
RL(n)

r + ||x′
RL(n)||2

(5)

where µ is the step size, r is the regularization factor,
eR(n) is the error captured by the error microphone in-
side the right ear cup, x′

RR(n) and x′
RL(n) are the noise

captured by the right reference microphone, filtered by the
estimate of the secondary path, S′(z) and the noise cap-
tured by the left reference microphone, filtered by the esti-
mate of the secondary path, S′(z) respectively. The error
signal is given by

eR(n) = aR(n) + y′R(n) ∗ SR(n) (6)

where aR(n) is the total ambient noise captured at the
left error microphone attenuated by the headphone shell,
y′R(n) is the control signal driving the right headphone
driver and SR(n) is the impulse response corresponding
to the right headphone driver.

For the subsequent analysis, a typical example case
is examined, and it is assumed that both the primary and
secondary noise sources reside to the right of the listener

in the horizontal plane, so the right-ear is chosen as the
Good-Ear. This signifies that due to the head shadowing
effect, the energy of the right reference microphone sig-
nal mR(n) contains significantly more energy than the re-
spective left reference microphone signal mL(n). In order
to further emphasize this, the output of the TDBF BFo, is
used to drive the adaptive filter wRR and its respective
controller.

2.8 Evaluation metrics

The performance of the SELD model was evaluated us-
ing the metrics of Precision, defined as the ratio between
the number of correctly classified sound events to the to-
tal number of sound events classified as active, Recall, de-
fined as the ratio between the number of correctly clas-
sified sound events to the total number of sound events
present in the audio clip, F1-score, which is the harmonic
mean of Precision and Recall for the SED task, and the
Mean Absolute Error for the DOAE task.

High Precision, Recall and F1-score values indicate
that the model is able to correctly classify the events,
while low MAE values indicate that the model is able to
accurately predict the DOA of the events.

The performance of the ANC is evaluated using the
Ie metric, which is given by

Ie = 10log10(

∑N
n=0 e

2
MRFANC(n)∑N

n=0 e
2
PROP(n)

) (7)

where Ie denotes the improvement in dB calculated as
the ratio between the steady-state errors of the two meth-
ods, namely the proposed TBANC and the traditional MR-
FANC approach i.e. when no beamformer or source tar-
geting system is active. To guarantee that both approaches
have already converged, the last 20s of the simulations are
used in the above calculations.

3. RESULTS

3.1 Disturbance metric

The disturbance ratings obtained from the listening test,
described in Sec. 2.2, were statistically analyzed to deter-
mine whether the type of noise (café, traffic and subway
station) had an effect on the evoked disturbance of the lis-
teners. Due to the ordinal nature of the disturbance ratings
and the fact that the distributions of ratings for each type
of noise were not normal, the non-parametric Friedman
test was conducted along with post hoc analysis [19], to
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examine the statistically significant differences between
the disturbance ratings of each type of noise. It was found
that there were statistically significant differences in the
distributions of disturbance ratings of the three difference
types of noise (χ2(2, n = 72) = 22.525, p < .001).
Dunn’s pairwise tests were carried out using a Bonferroni
correction, and statistically significant differences were
found between traffic and café noise (p < .001) as well
as traffic and subway station noise (p < .001). No sig-
nificant differences were found between café and subway
station noise (p = .145). Therefore, there is strong evi-
dence that the traffic noise has higher Disturbance metric
compared to subway station and café noise, while no state-
ment can be made for the evaluated Disturbance metric of
café noise compared to the subway station noise.

3.2 Sound Event Detection Results

The results for the SED task are shown in Tab. 1 for each
of the three classes, along with the average precision, re-
call, and F1-score. The results show that the proposed
method achieves a high precision and recall for all classes,
with an average precision of 82% and recall of 89%. The
lower precision in the café class is attributed to the fact
that strong gusts of wind are also included in the respec-
tive recordings, thus making the café class more difficult
to detect.

Table 1. Classification results for the SED task. The
precision, recall, and F1-score are reported for each
class along with their respective averages.

Precision Recall F1-score
café 0.73 0.93 0.82
traffic 0.91 0.78 0.84
subway station 0.82 0.96 0.89
Avg. 0.82 0.89 0.85

3.3 Direction of Arrival Estimation Results

In this section, the results for the DOAE task are pre-
sented, given a correct SED classification. The results re-
garding the achieved MAE is shown across different SNRs
in Fig. 5 for the 3 different SNR cases evaluated in this
work.

The proposed method achieves a low MAE for all
classes, with a total average MAE of 0.34◦. The aver-

Figure 5. MAE for the DOA estimation task for the
different classes averaged across SNRs: (a) café; (b)
traffic; (c) subway station.

age MAE achieved for the café, traffic and subway station
classes was 0.72◦, 0.20◦, 0.08◦ respectively.

3.4 Convergence speed

Due to the difference between the two signals m′
R(n) and

mL(n) used to drive the respective adaptive filters the
convergence speed of the MRFANC algorithm is nega-
tively affected as can be seen in Fig. 6, with the proposed
TBANC scheme converging to the steady-state error after
2.5s compared to the original MRFANC algorithm that
converges after 1.3s. The primary-to-diffuse SNR had no
effect on the convergence speed of the algorithms.

Figure 6. Error measured inside the right earcup for
the proposed TBANC-D scheme (blue), compared to
the original MRFANC approach (red).
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3.5 Steady state performance

The steady state frequency domain results of the proposed
TBANC-D approach can be observed in Fig. 7. The per-
formance of MRFANC and the proposed approach are
similar for frequencies ≤ 200Hz, but in the frequency
range between 200Hz and 10kHz a significant improve-
ment is observed by the TBANC-D reaching up to 20dB
improvement in the 3− 5kHz region.

Figure 7. Spectra of the passive noise attenuation
performance of the headphone shell (blue); TBANC-
D approach (red); and the original MRFANC (yel-
low). The spectra are from the last 20s period.

In Fig. 8 the steady-state error improvement Ie (in
dB) achieved by TBANC-D compared to MRFANC for
different mixing scenarios is shown. The results show that
the proposed approach achieves a significant improvement
in the steady-state error for all cases, except for when the
traffic noise plays the role of the secondary source i.e. the
cafe-traffic scenario where performance deteriorates and
the subway-traffic scenario where the performance im-
provement is negligible. This result however is compen-
sated by the fact that according to the results presented in
Sec. 2.2, this will never be the case, since the traffic noise
consistently plays the role of the primary source due to the
related disturbance metric.

4. SUMMARY & DISCUSSION

In this work TBANC-D, a novel Targeted through Beam-
forming ANC approach is proposed, which utilizes a
novel Disturbance metric in order to steer a TDBF to the
primary disturbing source using a SELD neural network,
to more significantly attenuate the most disturbing source

Figure 8. Steady-state error improvement Ie (in dB)
achieved by TBANC-D compared to MRFANC for
different Primary - Secondary source mixing scenar-
ios.

in a complex auditory scene, while also significantly at-
tenuating the background noise field to acceptable levels.

The performance of the system was evaluated through
the simulation of a diffuse sound field in the presence
of up to 2 noise sources. Specifically the Precision, Re-
call and F1-Score were used to gauge the performance
of the SED system, and the MAE of the DOAE system,
with both achieving high performance in their respective
tasks with the average F1-Score being 0.85 and the aver-
age MAE being 0.33o. The TBANC component was eval-
uated with respect to the steady-state noise attenuation, as
well as in terms of convergence speed compared to the es-
tablished MRFANC approach, with the proposed TBANC
approach achieving an improvement of up to 20dB in the
3−5kHz region, being especially important since human
listeners have a significantly increased sensitivity in such
region.

The results presented in this work, concern up to 2
active noise sources whose location remained the same
throughout the simulation. It is important to note, that a
scenario where the recordings utilized in this work would
coincide to form an acoustic scene would be highly un-
likely, however such noises are excellent representations
of the types of noises that are encountered in real life sce-
narios, such as babble noise, wind, cutlery etc. Future
research includes extending the proposed method in order
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to accommodate any number of sources with varying lo-
cation, through the use of the employed SELD network,
with similar works achieving exceptional results [11] in
such scenarios. However, in such cases the available mi-
crophones would have to increase in order to achieve more
directive beamforming. Furthermore, a personalized Dis-
turbance metric would ideally be developed, in order to
further improve the experience of the headphone listener.
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