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ABSTRACT

The normal incidence sound absorption properties of
porous materials are most commonly measured using
two-microphone impedance tubes. However, a single
impedance tube measurement does not yield sufficient
information to identify the material’s sound propagation
characteristics, i.e. the characteristic impedance and the
wavenumber. More elaborate measurement techniques
are required to obtain these, which demand more time,
equipment, and enhanced user knowledge. This contri-
bution presents a hybrid deep learning two-microphone
impedance tube method, which estimates the sound propa-
gation characteristics of a porous sample based on a single
measurement conducted with a standard two-microphone
impedance tube. A parameterized, fully convolutional
encoder-decoder network processes the measured surface
impedance and returns an estimate of the sample’s char-
acteristic impedance. The wavenumber follows from the
measured surface impedance and the estimated charac-
teristic impedance. The network is parameterized with
respect to the measurement’s frequency resolution. By
doing so, the pre-trained network can process data stem-
ming from arbitrary impedance tubes, accounting for any
changes in microphone positioning or measurement sam-
pling rates. We validate the proposed method with simula-
tions of multiple specimens made of different porous ma-
terials. The proposed method significantly reduces the re-
quired resources and expenses for acoustic material char-
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1. INTRODUCTION

The standardized measurement method using a two-
microphone impedance tube [1] is the most common tech-
nique for measuring the sound absorption coefficient of
sound-absorbing samples. However, this measurement
method can only determine the sound absorption coeffi-
cient given the normal incidence of a plane wave. In con-
trast to the plane wave sound field enforced in impedance
tubes, spherical sound waves propagate in real, three-
dimensional spaces and often impinge an absorbing panel
at arbitrary angles of incidence. Under such real con-
ditions, the absorption characteristics of the absorbing
panel may differ significantly from those measured in the
impedance tube, particularly when the absorbing panel
is made from a material that exhibits non-local reaction
behavior [2]. As a matter of fact, the absorbing panel
may not perform as expected in its installed state, i.e., in
situ. Measurements in a semi-anechoic chamber serve to
determine the absorption behavior of such an absorbing
panel under free-field conditions and hence, yield a rea-
sonable estimate for its performance in situ. However,
such an experimental procedure is laborious. Numerical
simulations, e.g. by using the direct discrete complex
image method [3], can be used to predict the sound ab-
sorption of a flat absorbing panel under free-field condi-
tions. However, the sound propagation characteristics in
the porous material, i.e., the wavenumber and the char-
acteristic impedance, need to be known for accurate sim-
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Figure 1. Process scheme of the frequency-parameterized hybrid deep learning impedance tube method.

ulation results. These sound propagation characteristics
can be experimentally determined using the two-cavity
method [4], the three-microphone impedance tube, or the
four-microphone transmission tube method. However,
these more elaborate methods require more time, equip-
ment, and advanced user knowledge than the standard-
ized two-microphone impedance tube method. In Ref. [5],
the authors of this paper presented a hybrid method that
combines a deep neural network with the two-microphone
impedance tube method to reduce the measurement ef-
fort and resources required to determine sound propaga-
tion characteristics in porous media. In particular, a U-net
is used for this purpose. While the traditional two-cavity
method requires two individual measurements with a two-
microphone impedance tube [4], the U-net replaces the
second measurement in the hybrid method [5]. Conse-
quently, the hybrid method adopts the analytic equations
of the two-cavity method but uses only the outcome of
one impedance tube measurement and the network’s pre-
diction to calculate the sound propagation characteristics.

This contribution aims at improving the hybrid deep
learning impedance tube method introduced in Ref. [5] by
introducing two adaptions: First, replacing the U-net ar-
chitecture from Ref. [5] with a parameterized U-net archi-
tecture should enable the application of the hybrid method
to arbitrary impedance tube setups. Second, the param-
eterized network is trained to estimate the characteristic
impedance directly. This step aims to overcome one limi-

tation of the hybrid method associated with using the an-
alytic equations of the two-cavity method [5].

2. THEORY

The principle idea of the proposed method is to use a
pre-trained deep neural network, which allows for flex-
ible input dimensions, to estimate the sound propaga-
tion characteristics of a porous specimen based on a sin-
gle measurement with a two-microphone impedance tube.
Fig. 1 schematically shows the procedure for estimat-
ing the sound propagation characteristics using the pre-
trained frequency-parameterized deep learning impedance
tube method proposed in this work. At first, the nor-
mal incidence surface impedance ZS of a compound made
of the porous specimen under investigation (thickness d)
and an air cavity of predefined thickness L is measured
using the standardized two-microphone impedance tube
method [1]. This measured surface impedance ZS gener-
ally varies with the frequency f . Note that the measurable
frequency range is limited by the geometry of the tube, in
particular its inner diameter, and the distance between the
microphones (mic 1 and mic 2) [1]. The frequency reso-
lution of the measurement can be varied by adjusting the
sample rate and the sample length in the data acquisition
software. The measured surface impedance and the vec-
tor of discrete frequencies f serve as inputs to the deep
neural network, which provides an estimate of the speci-
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men’s characteristic impedance Zc (f) with the identical
frequency resolution as the measured surface impedance.
The wavenumber in the porous specimen, γ, is then cal-
culated from the measured surface impedance and the pre-
dicted characteristic impedance as [4]

γ (f) =
1

2id
ln

(
ZS + Zc

ZS − Zc

Z1 − Zc

Z1 + Zc

)
, (1)

where [4]
Z1 = −iZ0 cot (γ0L) (2)

is the surface impedance at the interface between the
porous specimen and the air cavity. It can be calculated
from the free-field impedance of air Z0 = ρ0c0 and the
wavenumber in air γ0, where ρ0 and c0 are the mass
density and the speed of sound in air. While the post-
processing step to obtain the intrinsic wavenumber of the
porous material, Eq. (1) is identical to that in the tradi-
tional two-cavity method [4] and in the originally pro-
posed hybrid deep learning impedance tube method [5],
the extensions proposed in this work enable a direct deter-
mination of the characteristic impedance based on a single
two-microphone impedance tube measurement.

The centerpiece of the proposed method is a param-
eterized U2-net, which has been inspired by the Up-net
proposed by Stender et al. [6]. This fully-convolutional
encoder-decoder network uses multiple encoding paths,
in this case, one for the measured surface impedance ZS

and a second one for the vector of discrete frequencies f ,
whose information is fused in one expansion path to pro-
vide predictions of one output quantity, the characteristic
impedance, cf. Fig. 1. In contrast to the originally pro-
posed hybrid deep learning impedance tube method [5],
the additional encoder path, which deals with the vec-
tor of discrete frequencies, allows for a network param-
eterization concerning the measurement’s frequency res-
olution. This enables the prediction of the characteris-
tic impedance for arbitrary frequency ranges and resolu-
tions, which is an essential asset in the light of integrating
the hybrid deep learning impedance tube method into an
impedance tube measurement software.

Training the parameterized network requires training
data that include sufficient information on the dependency
of Zs and Zc concerning the frequency. We rely on the
data acquisition strategy outlined in Ref. [5] to gener-
ate numerical data to train the network. For the current
study, the network is trained with input sequences of 800
frequency steps and surface impedance sequences corre-
sponding to a specimen thickness of d = 48 mm and

cavity thickness of L = 20 mm. Each numerical sam-
ple within the data sets comprises values of ZS and Zc

for frequencies between 50 and 5000 Hz with a frequency
resolution of 1 Hz. The network is trained with a batch
size of 25 for 150 epochs, using 70 % of the data for
training and 15 % for testing. The remaining 15 % of the
data serve to validate the network’s performance after the
training has been completed. A scheduled learning rate
is used, which reduces the learning rate after the first ten
epochs and subsequently with every following epoch with
a factor of exp(−0.1). Remark that re-training of the net-
work is required if the specimen thickness d changes since
the input surface impedance significantly depends on the
specimen thickness.

3. RESULTS

Fig. 2 compares the U2-net’s predictions and the ground
truth for the characteristic impedance of five selected sam-
ples of the validation data set. The real and imaginary
parts of the predictions agree nearly perfectly with the nu-

Figure 2. Comparison of the predictions of the
characteristic impedance Zc (real part: dashed blue,
imaginary part: dashed red) and the ground truth
(black solid) for five selected samples of the valida-
tion data set. R2 values indicate the coefficient of
determination.

merical ground truth, which is additionally proven by the
associated coefficients of determination (R2 values). Note
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that each of the five selected samples is defined on a dif-
ferent frequency range, proving that the proposed U2-net
architecture enables the hybrid deep learning impedance
tube method to apply to various impedance tube measure-
ment setups.

Fig. 3 shows the comparison between the enhanced
hybrid method’s estimates of the wavenumber and the
ground truth for the selected samples 1⃝ and 4⃝ as indi-
cated in Fig. 2. While the wavenumber for sample 1⃝ is es-
timated with high accuracy, the estimate of the wavenum-
ber for sample 4⃝ shows high deviations for frequencies
above 1000 Hz. This is because the argument of the
complex-valued logarithm in Eq. (1) varies significantly,
even though the characteristic impedance has been pre-
dicted nearly perfectly, cf. Fig. 2. This happens if the
surface impedance ZS, the characteristic impedance Zc

and the interface’s impedance Z1 have similar values for
which the denominators in Eq. (1) potentially tend to zero.
This effect has also been observed in the original hybrid
deep learning impedance tube method [5], where Eq. (1)
is also used to calculate the wavenumber. For a more
detailed insight into this issue, the reader is referred to
Ref. [5].

Further, the predictions of the characteristic
impedance and the estimates of the wavenumber show
deviations at the frequency ranges’ beginning and end.
These deviations are attributed to the zero padding
applied in the up-convolution stages of the U2-net, cf.
Ref. [6].

In summary, the adaptions introduced in this work en-
able the hybrid deep learning impedance tube method to
apply to any two-microphone impedance tube setup while
yielding accurate, direct predictions of the characteristic
impedance. However, in some cases, the wavenumber es-
timation suffers from the same issues as the original hy-
brid method.
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