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ABSTRACT

In flow acoustical problem sets, there is typically a large
disparity of scales between hydrodynamical and acousti-
cal phenomena both in amplitude and spatial extent. This
results in major difficulties for low Mach number and
high Reynolds number applications, resolving both acous-
tic and flow fields in a compressible flow simulation and
applying correct boundary conditions. Consequently, dur-
ing the design process of flow guiding structures, flow,
and acoustic fields are only investigated separately, or
a forward coupled simulation workflow (standard hybrid
aeroacoustic approach) is used. This methodology, how-
ever, fails to accurately predict any flow instability mech-
anism caused by back-coupling of the acoustic field to the
flow field, as is the case for whistling sound. This work
presents a novel approach to excite flow instabilities, such
as the whistling mechanism by applying acoustical mode
forcing on an otherwise incompressible flow simulation.
This allows for optimal domain size and boundary condi-
tions of the incompressible flow domain. Furthermore, in
contrast to strong direct coupling of the flow and acoustic
domains, all interpolation tasks can be performed a priori.
The relatively low computational cost makes this method
especially well applicable to the task of designing com-
plex flow-guiding structures such that whistling is miti-
gated in an early development stage.
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1. INTRODUCTION

Inside technical devices with flowing media such as hy-
draulics, pneumatics, or cooling circuits, the fluid flow
serves purposes such as force transmission, damping, and
heat transport, among others. Consequently, due to the
low Mach numbers that come with low flow speed and
high speed of sound of liquids, incompressible Computa-
tional Fluid Dynamics (CFD) is mostly used in the early
design stage. Regarding flow acoustics, incompressible
CFD is commonly used to obtain acoustic sources for suc-
cessive acoustic propagation simulation (e.g.: [1], [2]).
This type of hybrid aeroacoustic simulation workflow [3]
based on pure forward coupling of the flow field to the
acoustic field can give accurate predictions of turbulence
generated sound [4] as well as sound production due to
vortex shedding [5]. However, during the early devel-
opment stage, however, a rough estimate of the radiated
broadband sound caused by turbulent flow, as well as the
existence of vortex shedding causing tonal sound produc-
tion, might be sufficient to assess the quality of the design
regarding flow acoustics. Therefore, estimations of the
average acoustic source power ⟨Psource⟩ are used, e.g. in
[6]

⟨Psource⟩ = −ρ0
〈∫

Ω

(ω × u) · va dΩ

〉
,

where ⟨•⟩ denotes the temporal average. Alternatively,
in duct systems, a scattering matrix can be used to form
an eigenvalue problem to analyze the growth rate of lin-
earized modes of the compressible flow [7].
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In most flow problems, vortex shedding is triggered
by the instability of a detached mixing layer or jet flow.
This kind of flow instability is caused by the feedback
of either the generated vortical structures, i.e., hydro-
dynamical feedback, or the acoustic mode caused by the
vortex shedding, i.e., flow-acoustical feedback. As the
sound-generating mechanism has to be resolved, incom-
pressible CFD can model hydro-dynamical feedback only.
Consequently, incompressible CFD cannot fully depict
the whistling potentiality of complex flow geometries.

To give a reliable assessment of the whistling poten-
tiality, either compressible flow simulation, i.e., Direct
Noise Computation (DNC), or a hybrid workflow incor-
porating forward- and back-coupling from the flow to the
acoustic model is required. Due to the disparity of length
scales in flow acoustics [8], [9], DNC poses high require-
ments regarding temporal and spatial resolution of the
domain resulting in high computational cost. Similarly,
back-coupling from the acoustic to the flow domain adds
significant complexity, as flow and acoustic fields need to
be solved simultaneously. Flow and acoustic solvers often
work with different methods on different grids and use dif-
ferent time step sizes for improved performance. Conse-
quently, interpolation techniques, temporal sub-stepping
techniques, or iterative coupling might be required.

This work presents a method to assess the whistling
potentiality regarding flow-acoustical feedback that relies
solely on incompressible CFD and uses eigenmode forc-
ing to trigger the potential instability mechanism. The
used method is presented in Section 2. In Section 3, the
method is applied to simulate a simple geometry resem-
bling a closed organ pipe. Section 4 discusses the obtained
results and the limitations of the presented method, and
Section 5 concludes the presented work.

2. METHODOLOGY

This section presents a fully coupled hybrid aeroacous-
tic formulation based on [10]. Consequently, the acoustic
part of the formulation is transformed into modal space,
and decoupling is achieved by using an estimation ap-
proach for the mode scaling.

2.1 Governing Equations

Starting from the fully compressible conservation equa-
tions of mass, momentum, and energy, [10] derived a
set of equations separating the acoustic and incompress-
ible flow fields introducing corresponding coupling terms.

This is done by splitting the flow velocity u into incom-
pressible, i.e. mean and vortical, and acoustic parts

u = ū+ uv︸ ︷︷ ︸
uic

+va . (1)

Similarly, pressure p and density ρ can be split into mean
and fluctuating parts due to incompressible (denoted by
superscript ic or ′) and acoustic (denoted by superscript a)
distortions

p = p0 + pic + pa .

ρ = ρ0 + ρ′ + ρa .
(2)

2.1.1 Incompressible flow

Assuming isentropic condition of the medium, the incom-
pressible flow can be described by

∇ · uic =0 (3)

ρ0
∂uic

∂t
+ ρ0∇ ·

(
uic ⊗ uic) =−∇pic +∇ · τ −Q

(4)

with the viscous stress tensor τ and the coupling term

Q = ωic × va (5)

where ωic is the vorticity of the incompressible flow.

2.1.2 Acoustics

The acoustic back-coupling term in Eq. (5) requires
knowledge of the acoustic particle velocity va, which can
be solved using any acoustic conservation equations like
APE-1 formulation [11], which is used in [10], or acoustic
wave equation like the Perturbed Convective Wave Equa-
tion (PCWE) [12]

1

c20

D2ψa

Dt2
−∆ψa = − 1

ρ0c20

Dpic

Dt
,

D
Dt

=
∂

∂t
+ ū · ∇ .

(6)
The PCWE is a reformulation of the APE-2 formulation
[11] for low Mach number flows neglecting entropy and
heat sources as well as vortical mode coupling and is
solved for the acoustic potential ψa

∇ψa = va,
Dψa

Dt
=
pa

ρ0
. (7)
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2.2 Modal decomposition

As the acoustic field is modeled linearly, it can be decom-
posed by a superposition of orthogonal basis functions xi.
Consequently, an approximation of order N is given by

ψa ≈
N∑
i=1

ψa
i xi . (8)

Using the harmonic ansatz

ψa = ψ̃aejωt, pic = p̃icejωt , (9)

where j is the complex unit, ω is the angular frequency
and˜represents harmonic quantities, Eq. (6) can be trans-
formed into the frequency domain

k2ψ̃a +∆ψ̃a =
jω

ρ0c20
p̃ic (10)

neglecting mean flow and with the wave number k = ω
c0

.
To obtain a set of orthogonal basis functions, the corre-
sponding eigenvalue problem

(A− Iλ)x̃ = 0, A = ∆, λ = −k2 (11)

can be solved for eigenvectors x̃. The physical field can be
approximately reconstructed by the time-harmonic field
by

ψa ≈
N∑
i=1

γi

[
ℜ(ψ̃a) cos(ωit) + ℑ(ψ̃a) sin(ωit)

]
x̃i

(12)
with according scaling factors γi. Using the definition of
the acoustic potential given in Eq. (7), a decomposition of
the acoustic particle velocity is given by

va = ∇ψa =
N∑
i=1

ψa
i∇xi. (13)

2.3 Mode scaling

The scaling factors γi in Eq. (12) are the remaining cou-
pling variable from the incompressible flow to the acous-
tic field and can’t be evaluated straightforwardly. For ver-
ification, the scaling factors can be chosen such that the
absolute value of the acoustic pressure fluctuation p̃ai ap-
proximates the amplitude of the Fourier transform of the
compressible pressure pc at the corresponding eigenfre-
quency ωi

|p̃ai | ≈ |F{pc}|ωi
. (14)

This approximation is only valid in a region far from
any distorted flow, so pressure fluctuations based on the
incompressible flow can be neglected. Naturally, this esti-
mation requires knowledge of the compressible field and
therefore is not practicable regarding the methodology
presented. However, evaluating the accuracy of the pre-
sented estimation method will be useful.

2.3.1 Acoustic source power

An estimate for the averaged acoustic source power is de-
rived by Howe [13]

⟨Psource⟩ = −ρ0
〈∫

Ω

(ω × u) · va dΩ

〉
, (15)

where ⟨•⟩ represents the temporal average, Ω is the flow
domain, ω = ∇ × u is the vorticity of the flow field,
and u and va are the flow and acoustic particle velocities,
respectively.

This estimate can be simplified as shown by [6] arriv-
ing at

⟨Psource⟩ =
〈∫

Γ

(B′m′) · ndΓ

〉
, (16)

with the fluctuating total enthalpy B′ and the fluctuating
mass flow m′

B′ =
pa

ρ0
+ ū · (va + uv) , (17)

m′ =ρ0 (v
a + uv) + ρ′ū , (18)

and acoustic pressure fluctuation pa, mean flow velocity
ū, and fluctuating velocity of the vortical flow field uv.
Thereby, Γa represents a closed contour containing the in-
vestigated flow domain. If Γa is chosen to be far from the
detached flow, the vortical flow field can be assumed to
vanish, i.e., uv → 0. Furthermore, the contribution of the
mean flow to the sound generation is neglected. There-
with, Eq. (16) simplifies to

⟨Psource⟩ ≈
〈∫

Γa

pava · n dΓ

〉
= ⟨Pa⟩ (19)

which is the definition of acoustic power.
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2.3.2 Scaling factor estimation

For the investigation of a singular dominant acoustic
mode, the mode forcing can be written according to
Eq. (7) and (12) as

pa ≈ γ1p
a
1 , va ≈ γ1v

a
1 (20)

with scaling factor γ1. The mode forcing shall be done in
a way that the resulting acoustic source power and radi-
ated sound power are of the same order of magnitude, and
therefore, ⟨Psource⟩

!
= ⟨Pa⟩. With Eq. (15), (19), and (20),

this can be rearranged to give an estimate for the scaling
factor

γ1 ≈
−ρ0

〈∫
Ω
(ω × u) · va

1 dΩ
〉〈∫

Γa
pa1v

a
1 · n dΓ

〉 . (21)

As the acoustic field is curl-free, and with the as-
sumption

∣∣uic
∣∣ ≫ |va|, the first term in the source in-

tegral of Howe is approximated by the incompressible
quantities. Furthermore, the sound power of mode 1 is
known a priori based on preliminary acoustic simulation.
It has to be noted that the mean part of the acoustic power
of the selected mode represents the effective power that
is radiated. Therefore, the effective part of the acous-
tic intensity is used in the denominator of Eq. (21), i.e.
⟨pa1va

1⟩ = 1
2ℜ (pa1v

a∗
1 ) = Ia

eff with ∗ marking the complex
conjugate. Therewith, the scaling factor can be calculated
by

γ1 ≈ C

〈∫
Ω

(
ωic × uic

)
· va

1 dΩ

〉
(22)

C =
−2ρ0∣∣∣∫Γa

ℜ (pa1v
a∗
1 ) · ndΓ

∣∣∣ . (23)

3. SIMULATION SETUP

In order to demonstrate the applicability of the methodol-
ogy, the flow of a simplified flute is investigated. The sim-
ulation setup resembles the setup of [14] that was used as
a demonstrative example in [10]. To reduce the computa-
tional effort and focus solely on the flow-acoustical feed-
back mechanism, the geometry was simplified and pro-
jected to a 2D problem, as depicted in Fig. 1.
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Figure 1. Not true to scale sketched geometry of a
simplified flute with indicated evaluation points and
flow boundary conditions. Dimensions in mm.

3.1 Preliminary acoustic simulation

To obtain the acoustic modes that ultimately cause vortex
shedding by flow-acoustic feedback, the acoustic eigen-
modes are calculated by solving the eigenvalue problem
defined in Eq. (11). The domain was discretized by ap-
proximately 13000 first-order elements with a maximum
size of hmax = 2mm. The boundaries to the ambient and
at the jet inlet were chosen as sound hard to account for
the reflections that occur at the boundaries of the reference
simulation (see Sec. 3.3). However, this leads to a zero-
valued constant following Eq. (22), as a closed system has
no effective power. To circumvent this issue, the ampli-
tude of the acoustic intensity |Ia| = |pava| is used instead
of the effective acoustic intensity to calculate the acous-
tic power in Eq. (23), which will be discussed in Sec. 4.
Used fluid properties are given in Tab. 2. The simulation
was performed with the open source finite element solver
openCFS 1 . Table 1 lists the first 4 eigenfrequencies of
the problem set an the corresponding acoustic power eval-
uated according to Eq. (19) on the contour Γa as depicted
in Fig. 1. As the acoustic particle velocity is zero on all
walls, only the part of the contour that goes through the
domain has to be evaluated. Modes 1 and 4 represent
the first and second oscillation modes of the Helmholtz-
resonator-like back-volume of the flute, while modes 2
and 3 are room modes due to the reflecting boundary con-
ditions. It has to be denoted here that only mode 1 con-
tributes significantly to the flow instability as their result-
ing particle velocity fields deflect the jet upstream to the
trailing edge of the cavity. As the acoustic power indi-

1 opencfs.org
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cates, mode 4 is one order smaller in magnitude and con-
sequently has no contribution to the whistling mechanism.

Table 1. Eigenfrequencies of the acoustic domain.
mode frequency acoustic power

1 1517Hz 1.03× 10−5W
2 1765Hz 2.36× 10−6W
3 2100Hz 2.69× 10−6W
4 2700Hz 1.39× 10−6W

3.2 Flow simulation

The flow simulation used the pressure-based incompress-
ible flow solver available in ANSYS Fluent. The computa-
tional domain consists of approximately 27000 cells. At
the inlet, a flow profile according to Poisseuille flow

U(y) = Ujet

(
y2

(hjet/2)
2 − 1

)
(24)

is applied with peak jet velocity Ujet = 30m s−1 and
jet channel width hjet = 1.5mm. This leads to a low
Reynold’s number flow at Rehjet

≈ 200. Hence laminar
flow can be assumed. At the ambient boundary, a pressure
outlet is applied. All walls are modeled by no-slip bound-
aries, and the used fluid properties are given in Tab. 2. The
mode forcing term is computed based on Eq. (5) using
the first acoustic eigenmode at f = 1517Hz according to
Eq. (13) and scaled using Eq. (22). The temporal averag-
ing was implemented using a moving mean operator with
a window width Tmean = 5×10−3 s. Figure 2 depicts the
flow field at time t = 0.05 s when the flow reaches a state
of steady oscillation.

Table 2. Fluid properties based on [10].
speed of sound c0 = 343m s−1

density ρ0 = 1.165 kgm−3

kinematic viscosity ν = 1.53× 10−4m2 s−1

center jet velocity Ujet = 30m s−1

3.3 Verification simulation

A DNC using a fully compressible flow simulation is per-
formed to verify the methodology. The air is therefore

simulation 1 simulation 2

simulation 3

Figure 2. Velocity fields simulations 1 (incompress-
ible), 2 (compressible), and 3 (mode forcing) at time
t = 0.05 s.

modeled as an ideal gas, with properties according to
Tab. 3. By resolving both flow and acoustic features and
therewith allowing full interaction a reference solution is
obtained to compare the mode forcing method. The sim-
ulation is performed on the same grid and with the same
boundary conditions as the incompressible flow simula-
tion (see Sec. 3.2). For both, inlet and outlet boundaries,
non-reflecting boundary conditions (NRBCs) were used
to reduce reflections. However, significant reflections of
acoustical waves were observed. Consequently, the acous-
tic simulation was adapted to match the far-field com-
pressible pressure (see Sec. 3.1).

Table 3. Thermal fluid properties.

specific heat capacity cp = 1006.43 J kg−1K−1

thermal conductivity λ = 0.0242Wm−1K−1

molecular weight M = 28.966 kg kmol−1
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Figure 3. Power spectral density of the flow pres-
sure at a monitoring point located inside the jet (see
Fig. 1) for incompressible, compressible and mode
forcing simulations.

4. DISCUSSION

The flow simulations were run for T = 0.08 s and the flow
pressure at the monitoring locations as indicated in Fig. 1
was evaluated in the interval Teval = [0.05, 0.08] s.

Figures 3 and 4 depict the power spectral density
(PSD) of the flow pressure at the monitoring points lo-
cated in the jet and above the cavity as indicated in Fig. 1.
The spectrum was obtained by Welch’s method using a
Hann window of size Tw = 0.01 s and 50% overlap. Sim-
ulation 1 is an incompressible simulation without mode
forcing, simulation 2 a fully compressible reference sim-
ulation, and simulation 3 uses the presented methodology.
For simulation 1, the incompressible pressure is evalu-
ated, while for simulations 2 and 3, the compressible flow
pressure is used. To obtain the compressible pressure for
simulation 3, the oscillating pressure due to the acous-
tic eigenmode scaled by the estimated scaling factor is
added to the incompressible flow pressure before evalu-
ating the PSD. As expected, simulation 1 doesn’t show
any fluctuations, as the whistling mechanism is based on
flow-acoustic feedback, which can’t be modeled by in-
compressible fluid, and the jet attaches to the wall, and
a laminar steady-state sets in due to the low Reynold’s
number. On the other hand, both simulations 2 and 3
show a distinct peak at around 1500Hz, which is the main
whistling frequency. The pressure amplitude of the peak
in simulation 3 is in good agreement with simulation 2,

Figure 4. Power spectral density of the flow pressure
at a monitoring point located above the cavity (see
Fig. 1) for incompressible, compressible and mode
forcing simulations.

indicating appropriate scaling of the acoustic mode. How-
ever, one must remember that the forced mode used in this
demonstrative example represents a standing wave instead
of the physically correct radiating mode. Therefore, the
scaling factor had to be estimated using the amplitude of
the acoustic power instead of the effective one. This way,
the mode scaling is not based on the radiated acoustic en-
ergy but on the reactive power amplitude.

Figure 5 shows the temporal evolution of the esti-
mated scaling factor for simulations 1 and 3. Once the
initial transient is faded away, the scaling factor estimate
is negligible for simulation 1 while converging to a value
of γ1 ≈ 41.5 in simulation 3. The fluctuation could be fur-
ther reduced by extending the window length of the mov-
ing average filter. However, the simulation has proved to
be insensitive to fluctuations in the scaling factor. This
value is slightly lower than γ1 ≈ 51.4 one would ob-
tain according to Eq. (14). This explains the slight un-
derestimation of PSD in Fig. 4 at the whistling frequency
and could be due to nonlinear effects and the simplifying
assumptions made in Sec. 2. The pressure spectrum in-
side the jet region is also predicted accurately for higher
frequencies. However, towards higher frequencies, sim-
ulation 3 underestimates the pressure fluctuations at the
ambient monitor outside the flow region, as only one
acoustic mode is included in the simulation, and there-
fore other compressible effects at other frequencies can’t
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Figure 5. Temporal evolution of the scaling factor γ1
for simulations 1 and 3.

be resolved.

5. CONCLUSION

The presented method combines incompressible flow sim-
ulations with acoustic eigenmode forcing using a hybrid
formulation incorporating flow acoustic feedback. Conse-
quently, the flow acoustic feedback mechanism, the main
source of whistling noise, can be modeled. Due to the
modal representation of the major acoustic mode, the
acoustic domain can be solved a priori. Mode scaling of a
single dominant mode can be achieved using an estimate
for the acoustic source power, which can be evaluated
straightforwardly during the incompressible flow simula-
tion. The methodology allows triggering the vortex shed-
ding of a jet flow impinging on an edge in a simple flute
geometry, giving a good estimation of the flow pressure
at the vortex shedding frequency. Significant deviations
to the fully coupled simulation approach can be observed
at higher frequencies as only one acoustic mode has been
considered. In assessing the whistling potentiality of a
certain flow configuration, these limitations are accept-
able as the method still indicates correctly that a change of
the flow guide is necessary to avoid the whistling sound.
However, further investigation is needed to find a physi-
cal explanation of whether the used approximation of the
radiated acoustic energy by the reactive power amplitude
is a valid simplification. Furthermore, additional studies
have to be done to investigate the robustness of the method
in case of stable flows and other geometries need to be ex-

amined that give more significant insight into the general
feasibility of the presented method.
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[6] G. Nakiboğlu, S. Belfroid, J. Golliard, and A.
Hirschberg, “On the whistling of corrugated pipes:
Effect of pipe length and flow profile,” Journal of
Fluid Mechanics, vol. 672, pp. 78–108, 2011. DOI:
10.1017/s0022112010005884.

[7] A. Kierkegaard, S. Allam, G. Efraimsson, and M.
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