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ABSTRACT
The emergence of commercial underwater acoustic
modems from different manufacturers and the promulga-
tion of interoperability standards (e.g., JANUS) broadens
the application scenarios of underwater acoustic telemetry
and communications. At the same time, security concerns
call for authentication and privacy-enforcing schemes.
However, compute- or communication-intensive methods
for terrestrial networks do not adapt well to bandwidth-
constrained acoustic communications. In this context, we
discuss the findings of the NATO SPS SAFE-UComm
project, which involves research teams from Italy, Israel,
Canada, and the UK. The project investigates and realizes
practical security schemes that exploit the randomness of
physical acoustic communication processes for security,
and evaluates the potential of biomimicry and the capa-
bility of biomimetic signal detectors. After discussing the
concept of SAFE-UComm, we survey its approaches to
security through a number of results related to authenti-
cation, privacy, and biomimicry functions. Our results,
based on several field experiments, show the feasibility of
the project’s design in relevant scenarios.

Keywords: Underwater acoustic communications,
physical-layer security, biomimicry, field experiments

1. INTRODUCTION

Underwater acoustic networks (UWANs) are becoming
cost-effective instruments to explore and monitor the
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oceans, but may become vulnerable to external attacks
when operating unattended for long periods of time. Re-
cent standards such as JANUS [1] offer a common acous-
tic communication format, and may make attacks more
likely. Computing performance limitations tend to dis-
courage encryption and authentication schemes, leaving
the UWAN exposed to external attackers. Security mech-
anisms tailored to underwater acoustic communications
(UWAC) constraints are thus gaining momentum, as ter-
restrial radio security rarely translates to UWANs [2].

Current work on cybersecurity for UWAC consid-
ers: the challenges of protection against denial-of-
service attacks like jamming [3, 4]; covert communica-
tions using low-probability-of-detection (LPD) signals or
biomimicry [5]; data integrity and message authentica-
tion; and key exchange protocols for cryptography [6].
Yet, underwater acoustic channels offer specific charac-
teristics that can be exploited for security. For instance,
the channel’s spatial dependency and the long propaga-
tion delay offer a diversity gain that enables the exchange
of cryptographic keys [7–9] or authentication [10], e.g.,
through physical layer security (PLS) schemes; the com-
plex mobility patterns of drifting nodes and the time-
varying channel impulse response could help prevent in-
terception attacks; and the strong attenuation leads to
sparse logical topologies that increase security by splitting
communications across disjoint wireless links [11].

In the NATO SPS SAFE-UComm project, whose con-
clusion is planned in Feb. 2024, we aim to design a cy-
bersecurity framework for underwater acoustic communi-
cations. With reference to Fig. 1, we investigate novel
and practical solutions for authentication, secret key ex-
change, analysis of bounds for low probability of detec-
tion and interception, as well as the use and detection of
biomimetic signals attempting to resemble natural under-
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Figure 1. Concept of the SAFE-UComm project.

water fauna sounds. With a view towards practical sys-
tems, we build upon existing UWAC modems, rather than
intervening in the modem’s design.

In this paper, we overview the main results and con-
clusions in the above fields. We show that UWAC en-
ables a number of PLS and low-probability of detection
(LPD) approaches, and that biomimicry is a feasible com-
munication medium when properly designed, although
some biomimetic signal characteristics [12] as well as the
operations of electro-acoustic transducers [13] can jeop-
ardize it. In all cases, we discuss preliminary experi-
ments, including tests with a flexible, low-power under-
water modem that will be used in the final trials. We
start with PLS approaches to underwater communications
security in §2, explore biomimetic approaches and de-
tectors thereof in §3, present preliminary results on our
transceivers in §4, and discuss conclusions in §5.

2. PHYSICAL LAYER SECURITY

2.1 Authentication

Those features of the impulse response of underwater
acoustic channels that vary significantly with a device’s
location, while remaining coherent over time, offer a good
basis for authentication [10]. Consider a typical deploy-
ment where nodes transmit data to a sink node, and an
attacker tries to pass forged packets as legitimate, while a
set of trusted nodes helps the sink detect forging by pro-
cessing the measured channel features (e.g., number of
channel taps, relative root mean-square delay, average tap
power, etc.). Because different features may be correlated,
we deploy a machine learning scheme based on autoen-
coders (AEs), a specific type of neural network (NN) that
learns the correlation among input features and projects
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Figure 2. PLS authentication: error ratio vs. the cor-
relation among observations at the trusted node [14].

them onto a latent space from which they can be recov-
ered with minimal error. All trusted nodes run their local
AE upon receiving a packet, and communicate M latent
space features to the sink (over an authenticated channel).
The sink then decides on authenticity [14].

To train the AEs, we consider (i) a distributed ap-
proach, where each trusted node and the sink separately
train a local AE; (ii) local decision making (LD), where
only the decision is communicated to the sink; (iii) a com-
bination of (i) and (ii), named CLDAE, that separately
trains different AEs to extract the M latent space features
and make a final decision, and is thus more practical from
a complexity and training data collection standpoint.

Our results are based on real UWAC measurements
taken in Eilat, Israel, in Jan. 2022, where three station-
ary buoys act as the trusted nodes, and four drifters repre-
sent three legitimate transmitters and one attacker. Fig. 2
shows the classification error ratio ϵ vs. the correlation α
among the trusted nodes’ measurements. We observe that
exploiting the correlation of the channel features makes
classification more accurate: M = 3 latent space features
improve considerably over the M = 1 case, whereas fur-
ther increasing M yields negligibly better results. More-
over, the mixed CLDAE approach outperforms both AE
and LD, since it is targeted towards the hypothesis testing
problem. Lastly, note that the error probability decreases
as α increases: this is due to observing different statistics
at different sensors, whereby multiple, highly correlated
measurements help reduce the decision uncertainty.

The above scheme requires zero to mild drift-like mo-
bility. For faster, intentional mobility, channel features
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decorrelate faster over time. We thus expand our approach
to explicitly account for the mobility of the legitimate
node, and help avoid that authentication fails or that NN
training loses relevance over time [15]. Here, we consider
the power-weighed average delay of the channel taps as
the authentication parameter, which is correlated with the
distance between the transmitter and the receiver. We then
track the mobility of the legitimate node via a Kalman fil-
ter. The difference between the Kalman tracking and the
observation of the features provides a good basis for au-
thentication: a good matching indicates a likely authentic
packet, whereas bad matching hints at forging.

To evaluate our idea, we consider an attacker that can
precode its transmissions to reproduce any channels, even
at all of the trusted nodes simultaneously, but makes an
error when localizing the legitimate transmitter. This im-
plies that the channel the attacker reproduces may not
be fully adequate to impersonate a legitimate network
device. Fig. 3 shows false alarm (FA) vs. missed de-
tection (MD) probabilities from a set of simulation car-
ried out with the realistic underwater acoustic ray tracer
Bellhop, considering an area of 6×6 km2 and varying
bathymetry. We compare single-sensor authentication
(SSA) to three approaches that merge outputs from multi-
ple trusted nodes, namely a linear classifier (LC) against a
trained AE and a one-class support vectore machine (OC-
SVM). All schemes collect 3 readings per trusted node
before making a decision. The results show that higher
localization errors improve the capability of the system to
differentiate legitimate and forged transmissions. More-
over, due to fast feature decorrelation LC outperforms
machine learning approaches. These results prove that
PLS yields reliable authentication and leads to practical
schemes, based on simple channel impulse response mea-
surements.

2.2 Secret Key Generation

To avoid the scalability issues that arise from pre-
installing shared keys and ciphers on a set of devices,
a possible secrecy solution is PLS-based key agreement.
By exchanging generic probing signals, a legitimate trans-
mitter (Alice) and receiver (Bob) can collect a dataset of
channel measurements, e.g., including the channel fea-
tures described in [10]. Under an (at least partial) channel
reciprocity assumption, Alice’s and Bob’s measurements
are correlated and can be processed to extract a common
key. The fast time variability of underwater channels then
yields different keys over time, from which Alice and
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Figure 3. FA vs. MD probability when tracking the
feature innovation metric via a Kalman filter [15].

Bob can accrue a higher number of secret bits: this ap-
proach fits any deployment whose time frame exceeds a
few minutes of operations. Moreover, it becomes hard for
an eavesdropper (Eve) to predict channel measurements
and guess the key.

We now discuss new techniques for the advantage dis-
tillation step of PLS key agreement. In this step, Alice and
Bob (and Eve) quantize channel measurements [11] to ex-
tract a bit sequence, that will be the input of the channel
reconciliation and privacy amplification steps. Instead of
naively quantizing the channel measurements, we propose
to exploit channel knowledge to design Alice’s and Bob’s
quantizers and (i) increase Alice’s and Bob’s reciprocity
while (ii) reducing Eve’s knowledge about the extracted
sequence. We proposed two approaches: one based on
quantizer optimization and a second one based on an AE.

2.2.1 Quantizer Optimization Approch

In [16] we presented a technique where Alice and Bob
jointly optimize their quantizers to maximize the lower
bound on the secret key capacity

C low
sk = I(sA; sB)−min {I(sA; sE), I(sB; sE)} , (1)

where sA, sB, and sE represent the bit sequence ob-
tained from the quantizers of Alice, Bob, and Eve, and
I(·, ·) denotes mutual information. In more detail, to con-
verge quickly and save energy, quantizer thresholds are
placed in a divide-and-conquer fashion. Quantizers are
designed via an adversarial strategy, where Eve and the
Alice-Bob pair optimize their quantizers in turns. First
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Figure 4. Secret key capacity considering the pro-
posed strategy (solid lines) and a uniform quantizer
(dashed), for b = 2, 3 and 4 bit, as a function of the
correlation between Alice and Eve [16].
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Figure 5. C low
sk obtained as a function of the correla-

tion between Alice and Eve, for correlation between
Alice and Bob, ρAB = 0.9 for the AAE, DAAE, and
MTAE solutions, for b =4bit and 6 bit [16].

Eve designs her quantizer to minimize (1), thus increas-
ing her knowledge about Alice’s (or Bob’s) extracted bit
sequence. Next, Alice and Bob jointly set their quantiz-
ers to maximize (1), increasing the reciprocity between
their bit sequences while at the same time making such
sequences as different from Eve’s as possible.

Fig. 4 shows the secret key capacity as a function of
the correlation between Alice’s and Eve’s observations,
ρAE, considering the average tap power as the quantized
channel feature, and extracting b = 2, 3, and 4 bit per
channel observation. Our quantizer adapts and takes ad-
vantage of the common information between Alice and
Bob’s observations. Moreover, the secret key capacity de-
creases when ρAE increases. Still, the proposed strategy
outperforms the uniform quantizer for all considered val-
ues of ρAE: for ρAE = 0.9 and b = 3bit, Alice and Bob
harvest 1 more secret key capacity bit using our strategy.

2.2.2 Autoencoder Approach

In [17] we proposed an adversarial autoencoder (AAE)
approach based on multitask learning: we extract the bit
sequence from an NN trained to strike a balance among (i)
the reciprocity between Alice’s and Bob’s measurements,
(ii) the uniformity of the extracted bit sequence, and (iii)
the eavesdropper leakage, where accounting for the lat-
ter reduces the correlation with the sequence extracted by
Eve. Training the NN via a uniformity loss function en-
sures that no information is lost when concatenating the

encoder with a uniform quantizer. Fig. 5 compares our
AAE to the state-of-the-art domain-AAE (DAE) [18] and
the multi-task autoencoder (MTAE) [19] for b = 4 and
6 bit. While the secret key capacity expectedly decreases
for high ρAE, our AAE achieves the best results for all
considered values of b.

3. BIOMIMICRY

3.1 Biomimetic signal detection and identification

LPD techniques face a key challenge in underwater acous-
tic communications: the limited bandwidth available often
enables interception using energy detection. Even noise-
like signals may expose the covert transmitter, because
they can be traced by an interceptor to a single location,
e.g., via beamforming, whereas ambient noise is assumed
to be isotropic. By way of contrast, recent schemes pro-
pose biomimetic communications, which hide informa-
tion in signals that resemble the vocalization of marine
mammals. This enables transmissions at high power, as an
attacker would believe to be receiving biological sounds.
Modulated biomimetic signals have a similar structure as
marine mammal vocalizations (e.g., chirplets, clicks, or
calls), all of which have a rich, time-varying frequency
content.

Detecting biomimetic signals requires an intercep-
tor to classify whether a received vocalization is gen-
uine or forged. Regardless of the communication pro-
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tocol, the main goal is to find a metric that can tell real
and biomimetic signals apart. In the following, we focus
on intercepting biomimetic dolphin whistles, although our
scheme applies to a broader range of biomimetic signals.

The design of our detector [12] starts from observ-
ing that a biological signal’s phase is much more diverse
compared to biomimetic signals, and even to played-back
biological sounds, as acoustic transducers have a limited
damping factor. The first step of our procedure is to de-
tect the presence of a whistle-like signal. This can be done
with a prior detection procedure such as PAMGuard. Then
we extract the statistics of the signal’s phase as a cluster-
ing metric. We use a phase-locked loop (PLL) to esti-
mate the phase of the signal and calculate its approximate
entropy, which quantifies the logarithmic likelihood that
sequences of patterns that are close for m observations re-
main close on next comparisons as well. Such a metric
does not depend on an estimate of the signal’s probabil-
ity density function, and can detect breaks in the signal’s
regularity. Because the energy and phase of whistle-like
signals vary over both frequency and time, the PLL can
effectively track the phase of the signal only if it operates
at a high frequency compared to the signal’s bandwidth.
This can be guaranteed through passband modulation.

We evaluated the performance of our method by
analysing a database of real whistles, and by projecting
and receiving biomimetic signals during a sea experiment
(both playbacks of real recorded dolphin whistles and syn-
thetic whistle-like signals). A false alarm, in terms of de-
tecting a biomimetic signal, is evaluated by running the
interceptor over the real dolphin’s whistles. The results
are shown in Fig. 6, and show that our method can dis-
tinguish well between the real and biomimetic whistles.
To the best of our knowledge, this is the first interception
technique that can separate between biomimetic UWAC
signals and real biological ones.

We also investigated an effective prior detection tech-
nique for dolphin whistles, by considering a convolutional
NN (CNN). We created a large-scale database of sound
recordings via a custom, low-power acoustic recorder an-
chored at a depth of 50 m, 1.5 m above the seabed, 200 m
away from the dolphin’s reef in Eilat, Israel. We recorded
27 days of audio during the summer of 2021. Through
a quality assurance procedure, we removed sporadic cut-
offs, extensive noise periods, and noise transients. We
then filtered the frequency range between 5 and 20 kHz
(which fits most dolphin whistles) and applied a whiten-
ing filter to correct for ripples in the hydrophone’s open
circuit voltage response and the sound card’s sensitivity.
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Figure 6. Distribution of the entropy of real, syn-
thetic, and played-back dolphin whistles [12].

Through short-time fast Fourier transforms, we cre-
ated dolphin whistle spectrograms and manually tagged
them to yield a ground-truth dataset. For classification,
we considered both a vanilla CNN and a pre-trained CNN
based on VGG-16, where we exploited transfer learning
and replaced the top layers with two fully-connected lay-
ers with 50 and 20 neurons, respectively. Our results
show that the vanilla CNN already achieves a remark-
able mean detection accuracy of 80.6% (outperforming
PAMGuard, which achieves 66.4%). The transfer learning
CNN, instead, achieves an accuracy of 92.3%. Although
the number of true negatives was comparable across dif-
ferent methods, the number of true positives was signifi-
cantly higher for deep learning models, especially for the
transfer learning architecture.

Finally, in our recent work [20], we extended the ap-
proach of using well-known image classification networks
as a pre-trained component for dolphin whistle detection.
The ultimate objective is to perform automated whistle de-
tection for recording from different underwater environ-
ments with as little need for (re-)training of a detector
as possible. For this purpose, in [20] we compared de-
tectors using different image classification networks and
developed models which perform comparably to or bet-
ter than existing methods. Our designs use minimal data
pre-processing and instead rely on the generalization ca-
pabilities of the neural network to adapt to the environ-
mental conditions. This was shown to be more effective
than applying, e.g., noise reduction techniques. We tested
our approach on the dataset described above and a dataset
from the 8th DCLDE workshop [21]. In particular, we
pre-trained the detector model on one data set, retrained
it with a small amount of data from the second data set,
and tested on the second data set. Our results show that
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the benefit of pre-training is an increasingly more stable
detection and false-alarm rate performance for increasing
size of the retraining data set. Our approach supports the
idea that transfer learning from one dataset to another is
likely taking place.

3.2 Generative approaches to biomimicry

Biomimetic signal generation methods for covert commu-
nications typically fall into one of two categories. The first
uses analytical models to represent modulated biological
sounds that carry data. Data modulation would be applied
in terms of shaping the waveform and/or the timing of suc-
cessive waveforms while retaining similarity with the bio-
logical sounds, e.g., [22–24]. In the second category, orig-
inal waveforms are used to directly generate biomimetic
signals [25], possibly after denoising. This retains a great
level of waveform authenticity, albeit detection is possible
due to the properties of acoustic projectors [13].

In our work, we pursue a learning-from-data approach
for biomimetic signal generation that lies in between the
two above categories. We use machine learning models
trained on biological waveforms to generate biomimetic
signals. The first potential benefit of our approach is a
greater versatility in mimicking biological signals. More-
over, it can improve over plain replay by also accounting
for projector characteristics, i.e., via pre-distortion.

A few choices need to be made when applying learn-
ing. First, what data is used for learning? Recorded acous-
tic waveforms or their transformations could be used as in-
put. For the latter, spectrograms seem to be a reasonable
choice, as spectrogram-based signal detection has been
shown to be highly effective. Second, how are waveforms
extracted from recordings? One could train a model with
the original recordings, but background noise would effect
the training process. Alternatively, extraction or denois-
ing techniques could be applied. The latter is attractive
for effective training, but it may introduce distortions to
the original waveform.

Generative adversarial networks (GANs) [26] and
their variants seem to be a natural choice. However, our
experience with GANs for the case of dolphin whistles
and training based on spectrograms has been unsatisfac-
tory. It seems that the sparse nature of the time-frequency
representation of the waveform is a challenge for GANs.
We are therefore focusing on alternative generative mod-
els that use efficient latent variable models to capture the
basic signal structure and use it for generation.

4. TRANSCEIVERS FOR UNDERWATER
CYBERSECURITY

The SAFE-UComm project aims to practically demon-
strate some of the security concepts described above us-
ing low cost, ultra-low power acoustic modems [27] de-
veloped for Internet of Underwater Things (IoUT) appli-
cations. These spread spectrum modems, although soft-
ware defined, have limits on available processing power
and memory, so algorithms must be computationally light.
Key enablers for physical layer security are i) rapid and
accurate measurement of the channel impulse response
(CIR) between two network nodes; and ii) simultane-
ous bidirectional channel estimation for reciprocal chan-
nel features.

The existing modems did not require channel estima-
tion in the receiver so this function had to be added. It
was also desirable to achieve this without adding overhead
for additional channel probing waveforms in the transmit-
ted data packets. The initial implementation relies on the
cross correlation of header symbols at the start of data
packets, consisting of random binary phase shift keyed
(BPSK) chips. This approach delivers useful CIR for most
purposes but, since the chip sequence has non-ideal au-
tocorrelation properties, sidelobe artefacts appear, which
also vary with the header data. These are a potential prob-
lem for channel-based authentication or key generation.

A better approach has proven to be a simple direct
adaptive filter model [28] using the header data as a train-
ing sequence. Figs. 7 and 8 show a comparison of the two
methods on a relatively benign channel, where the reduc-
tion in artefacts is obvious. This leads to clearer discrim-
ination of channel features, such as RMS delay spread,
with range shown in Figs. 9 and 10 from North Sea exper-
iments. This approach is also computationally light and
being incorporated in code for upcoming experiments.

For authentication or key generation, it is important
that the channels observed by the two nodes involved in
an exchange are as closely matched (reciprocal) as pos-
sible. Hence protocols have been developed to enable a
synchronized channel estimation message exchange. In
this case, short acoustic packets cross each other in the
medium, enabled by the low propagation speed of sound,
to ensure that the channel is observed by both nodes at
the same point in time. This exploits the modem’s built-
in ranging function, which can measure time of flight to
a resolution of 62.5 µs, to calculate transmission time off-
sets for a synchronized exchange.
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Figure 7. Time evolution of CIR by correlation. Figure 8. Time evolution of CIR adaptive model.

Figure 9. Channel feature by correlation. Figure 10. Channel feature by adaptive model.

5. DISCUSSION AND CONCLUSIONS

The ever-increasing capabilities of underwater sensors
and autonomous devices makes security issues more
pressing. The NATO SPS SAFE-UComm project tack-
led these issues by targeting distributed authentication and
privacy techniques, that make use of physical layer se-
curity rather than relying on closed-box cyphers. More-
over, the project investigated the reliable generation and
detection of biomimetic signals, where security lies in the
low probability of identifying information-carrying sig-
nals disguised as natural sounds. A number of preliminary
results so far confirm the effectiveness of these approaches
and their applicability in practical scenarios.

For the final demonstration of SAFE-UComm, sched-
uled at the end of September 2023, we plan to close the
loop between theory and practice. Thanks to the embed-
ded CIR measurement capabilities of Newcastle Univer-
sity’s underwater acoustic modems, we plan to extract se-

cret keys from the parameters of their statistical distribu-
tion of CIR features. According to our experience in [10],
this choice increases the likelihood that independent mea-
surements by Alice and Bob align.
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