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ABSTRACT* 

Acoustic Virtual Reality (AVR) has been increasingly used 
in building design, where sound fields are expected to be 
updated in real-time as the receiver and source move around 
the space. At low frequencies, wave-based methods can be 
used in the pre-calculation stage to obtain credible sound 
fields, that are stored for later real-time interpolation, which 
may lead to large storage requirements. This research 
proposed Neural Networks (NNs) trained by results from 
low-frequency room acoustic calculations such that they 
can provide the binaural room impulse responses (BRIRs) 
in real-time in an AVR framework. The room sound fields 
were calculated by solving the Helmholtz equation through 
the Finite Element Method and stored at spherical receiver 
arrays to build the training datasets. Convolutional Neural 
Networks are used to predict the spherical harmonics (SH) 
coefficients of the sound field distribution on spherical 
receiver arrays with the positions of the source and receiver 
as input. Combined with head-related transfer functions, 
these SH coefficients can be used to obtain BRIRs 
efficiently. At the cost of training NNs, this method is 
applicable to AVR scenarios with moving source and 
receiver and arbitrary head orientation, with the advantages 
of fast real-time calculation and distinct storage data 
reduction.  
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1. INTRODUCTION 

In recent years, AVR has been increasingly used in 
architecture and building design to obtain an acoustic 
perception that is close to reality. Since the room 
impulse responses (IRs) are dependent on the source and 
receiver position, sound fields should be continuously 
updated in real-time as the receiver and source move 
around in the space, and the spatialization process must 
be recalculated as the head orientation changes.[1] The 
calculation approaches can be divided into two main 
categories: the real-time calculation approach and the 
pre-calculated approach. The real-time calculation 
approach applies simplifications to get real-time 
performance within the strict time, which will naturally 
decrease the accuracy. The pre-calculated approach 
finishes most computations in a pre-calculation stage. At 
low frequencies, as all relevant wave behavior has an 
important influence on sound field composition,[2] wave-
based methods are generally necessary to obtain credible 
sound fields. Then the simulated IRs should be stored on 
the grid with spatial information.[1] During run-time, 
interpolation is done to obtain the sound field 
distributions on spherical receiver arrays corresponding 
to certain transducer positions. Plane-wave density 
functions (PWDs) can be calculated using plane wave 
decomposition from the sound field distributions. By 
convolving the PWDs with the head-related transfer 
functions (HRTFs), BRIRs including the impacts of head 
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and room can be obtained for auralization.[3] This 
approach leads to the problem of large storage 
requirements,[1] and the challenge of computing the 
plane-wave decomposition at interactive rates.[4] 
Machine Learning (ML) in acoustics is rapidly 
developing in recent years.[5] In the field of room 
acoustics, Pulkki et al. proposed fitting NNs with the 
input of geometric features and output of the filter 
parameters to render the acoustic effect of scattering 
from finite objects and provide a perceptually plausible 
response for the listener.[6] Tenenbaum et al. proposed a 
methodology using a radial basis functions type of 
artificial NNs trained by the BRIRs patterns to save 
computational time spent on the classical convolution 
method and produce faster auralization.[7] Fernandez-
Grande et al. proposed generative adversarial networks 
to reconstruct sound fields from experimental data and 
recover some of the sound field energy that would 
otherwise be lost at high frequencies.[8] Notably, Borrel-
Jensen et al. presented a physics-informed neural 
network to predict the solution to the linear wave 
equation to obtain the sound field in 1D with 
parameterized sources and impedance boundaries, and 
this method will be further applied in realistic 3D 
scenes.[9] In addition, there is a mesh-based neural 
network to generate impulse responses (IRs) for indoor 
3D scenes whereby 3D scene meshes were transformed 
into latent space and the latent space was used to 
generate IRs,[10] and a Neural Acoustic Fields 
methodology that represents how sounds propagate in a 
physical scene and learns to continuously map all emitter 
and listener location pairs to a neural impulse response 
function.[11] Besides, NNs are used to predict 
reverberation time, room volume, absorption 
coefficients, and eigenfrequencies, and analyze multi-
exponential sound energy decay.[12-16] 
This paper presents the basis for real-time auralization: a 
method based on a Convolutional Neural Network (CNN) 
trained by low-frequency wave-based calculations, 
which can be used in real-time convolutions and is 
applicable to the scenario of sound fields with moving 
sources and receivers, and varying head orientation. 

2. RESEARCH METHODS 

For AVR purposes, the low-frequency sound fields as 
sampled and stored at spherical receiver arrays should be 
decomposed into plane waves using the spherical 
harmonics expansion. 

 

To reduce the storage requirements of sound field data and 
save the computation load of plane-wave decomposition, 
we propose an NNs-based method, with the positions of 
source and receiver as input and SH coefficients that vary 
with frequency as output. In this work, the dataset will be 
established by solving the Helmholtz equation by the Finite 
Element Method (FEM) which ensures the accuracy of the 
sound field simulation for elements sizes that have been 
chosen properly small. After the Networks are trained, we 
can obtain SH coefficients at any transducer positions 
within the training areas in a certain room. In future work, 
by combining with the SH coefficients of room sound field 
distributions and the SH coefficients of HRTFs, the BRIRs 
can be obtained efficiently in real-time,[3,17] as shown in Fig. 
4. 

2.1 Input of Neural Networks 

The input datasets are composed of images showing source 
and receiver position distances to the room boundaries with 
pixels of 28×28. The distances from the sound source to 
walls in different directions are calculated and plotted in a 
sphere whose center is the source, and an example is shown 
in Fig.1(a) and mapped onto a plane as shown in Fig.1(b). 
Every value on the image shows the distance from the 
source to the wall in that direction. Images showing receiver 
positions are given in the same way, as shown in Fig.2. 
These images include information on transducer positions 
and room geometrics. 

 

Figure 1. Images presenting source position relative 
to room boundaries. 

 
Figure 2. Images presenting the receiver position 
relative to room boundaries. 
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2.2 Output of Neural Networks 

At low frequencies, a wave-based method was used to 
simulate the sound field in rooms. The sound field was 
excited by a point source, and a spherical microphone array 
was used to sample the sound pressure on a sphere. The 
equal-angle sampling method was used which means the 
azimuth angle  and elevation angle  are both sampled 
with the same number as shown in the following equations: 

1( ) , 0,..., 2 1
2 2 2q q q v

v
,            (1) 

2 , 0,..., 2 1
2 2l l l v

v
,                  (2) 

therefore, the total number of samples is given by 
(2v+2)2 [18] Notably, the sampling distance should follow 
the spatial sampling theorem.  
The sound field can be decomposed into plane waves 
using a spherical harmonics expansion. The SH 
coefficients A were calculated using: 
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where ( , , )p a  is the sound pressure distribution on the 
sampling sphere with the radius of a , 2 /k f c  is the 
wave number, ( )nj ka  is the spherical Bessel function of 
the first kind, and ( , )m

nY  is the spherical harmonics 
function.[19] 

 

Figure 4. Research approach rationale. 

 
Figure 5. The structure of Neural Networks. 
 

 
With all orders of SH coefficient, the plane-wave density 
function ( , )a  for every frequency can be obtained 
using:  
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where N is the highest order of spherical harmonics and 
is decided by: 

ka N .[18]                              (5) 
The output datasets were composed of the SH 
coefficients as a function of frequency for different 
orders of spherical harmonics, in real part and imaginary 
parts separately, and an example is given in Fig.3. These 
SH coefficients can be directly combined with HRTFs in 
future work which contributes to fast real-time 
calculation. 

 

  

Figure 3. SH coefficient for monopole (a) real part 
(b) imaginary part. 
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Figure 6. The architecture of the (a) Encoding 
Network (b) Decoding Network. 

2.3 Structure of Neural Networks 

Next, we used a CNN for image-to-sequence regression, a 
variant of Variational Autoencoder,[20] to learn the 
frequency-dependent SH coefficient curves. The structure 
of the NNs is shown in Fig.5. It is composed of two parts: 
Encoding Networks and Decoding Networks. The encoder 
takes an image input and outputs a Latent Vector 
representation using a series of down-sampling operations 
such as 2D convolutions as shown in Fig.6 (a). The input 
images of the NNs are the images presenting transducer 
positions. Latent Vectors are the suitable internal 
representation of input images. The decoder takes as input a 
Latent Vector and reconstructs the sequence using a series 
of up-sampling operations such as 1D transposed 
convolutions, as shown in Fig.6 (b). The output sequences 
are the curves presenting the SH coefficients varying with 
frequency. In Figures 6, the ReLU layer performs a 
threshold operation on each element of the input, where any 
value less than zero is set to zero. 

3. BENCHMARK CALCULATIONS 

3.1 Dataset building 

To build the dataset, the COMSOL6.0 pressure-acoustics 
module was used to simulate the sound fields in rooms at 
low frequencies. The room model and sampling sphere with 
a radius of 20 cm are shown in Fig.7(a). There were 10 
samples positioned along with both azimuth and elevation 
angle, 100 sampling positions in total. All boundaries are 
impedance boundaries. 
In this example, the highest frequency is 300 Hz. Sound 
fields with 16×11 sound source positions (Fig.7(b)) were 
simulated and 16×11 receiver positions (the center of the 
receiver as shown in Fig.7(c)) were sampled. The distance  
between two nearest sound sources or receivers is one-fifth 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
of the wavelength of the highest frequency, here it is 22.86 
cm for 300 Hz. The size of the dataset (number of source 
and receiver combinations) is 30976. 

(a)  

(b)  (c)  

Figure 7. (a) Room model (b) Source positions (c) 
Receiver positions. 

3.2 Neural Networks training 

MATLAB was used to train the NNs. The input of the 
NNs is the transducer images in 2 channels. As the 
spherical harmonics are truncated at order 2 at 300 Hz, 
there are 9 coefficients in total and every coefficient is 
divided into two real and imaginary parts, there are 18 
channels as output for this case. 
The loss L measuring how close the decoder output is to the 
ground truth by using the root-mean-square deviation is 
given by,

2

1

1 ( )
m

gj rj
j

L x x
m

,                     (6) 
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where m is the number of points, gjx  and rjx are the 
values for every point for the generative sequences and 
real sequences respectively. Training options are shown 
in Table 1, where the mini-batch is a subset of the 
training set that is used to evaluate the gradient of the 
loss function and update the weights, epoch presents the 
number of times all of the training vectors in the mini-
batch are used once to update the weights. Validation 
frequency gives how many subsets the training dataset 
contains and presents the iteration per epoch, therefore 
the total iteration is the product of validation frequency 
and epoch. Fig.8 gives the curve of loss varying with 
epoch. With increasing training, the loss is getting 
smaller which means the sequences generated are getting 
close to the real sequences. 

 
Figure 8. Loss curve (in the Y-log scale). 
 
Table 1. Training options settings. 

Training Options 
Training dataset size 30000 
Test dataset size 976 
Mini Batch Size 128 
Validation frequency 234 
Epoch 100 
Iteration 23400 

 

3.3 Results 

To verify the performance of the NNs, randomly 
choosing one pair of source and receiver positions, Fig.9 
shows the comparison of real sequences and generative 
sequences for the monopole. Accordingly, the sequences 
generated by the NNs are close to the real curves for 
both the real and imaginary parts. 
For the frequency range from 20 to 300 Hz, Eq. (4) was 
used to calculate the PWD. For the frequency range of 
20-224 Hz and 224-300 Hz, the spherical harmonic 
expansion should be truncated at order 1 and 2 
respectively according to Eq. (5). At the frequency of 
300 Hz, the real and predicted plane-wave density 
functions are shown in Fig.10(a) and (b).  

 
Figure 9. SH coefficients for the monopole (a) real 
part (b) imaginary part. 

 

 
Figure 10. The absolute value of PWD at 300 Hz (a) 
ground truth (b) predicted value. 
 
For the position of /100  and / 25, filtered by 
a filter in Fig.11, the frequency spectrums are shown in 
Fig.12 in real and imaginary parts. As we can see, the 
results predicted by the NNs are close to the results from 
FEM which we use as ground truth. 

 

Figure 11. Magnitude response of the filter. 
 

 
Figure 12. Comparison of real and predicted 
frequency spectrums (a) real part (b) imaginary part. 
 
The inverse Fourier transform of the frequency spectrum 
is the IR, as shown in Fig.13(a). The error (difference) 
between the predicted response and ground truth is 
shown in Fig.13(b). The error is rather small compared 
with the ground truth which ensures the reliability of the 
proposed methods. 
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Figure 13. (a) Comparison of real and predicted IRs 
(b) Error curve. 

Table 2. Errors. 

 Absolute error Percentage error 
T60 (s) 0.02 3.50% 

C50 (dB) 0.23 4.93% 
C80 (dB) 0.25 2.68% 
E∞ (dB) 0.15 0.30% 

 
Compared with the interpolation method, whereby the 
IRs are stored in grid with a spacing of one-fifth of the 
wavelength, the proposed method contributes to an 
improvement in storage reduction, whereby the storage 
of NNs is only 16.50 MB which is 4.29% of the 
interpolation method. The mean errors of 100 samples 
on 60 dB reverberation time T60, 50 ms Clarity C50, 
80 ms clarity C80, and total energy E∞ are given in Table 
2. The percentage errors are no more than 5%, which 
can’t be noticed according to the just noticeable 
difference (JND). 

4. CONCLUSIONS AND DISCUSSIONS 

This project proposed a frequency-domain-based low-
frequency room sound field modeling method for real-time 
auralization using a CNN trained by wave-based 
calculations. This method is applicable to the scenario of 
sound fields with moving sources and receivers, and 
varying head orientation. At the cost of training NNs, it 
contributes to obtaining relatively accurate BRIRs with the 
advantages of (i) real-time calculation: The output of NNs 
are SH coefficients of sound fields. The plane-wave 
decomposition is avoided at the run-time and the SH 
coefficients of sound fields can be combined with the SH 
coefficients of HRTFs to compute BRIRs efficiently. (ii) 
storage data reduction: Only NNs and SH coefficients of 
HRTFs should be stored to realize fast auralization. This 
approach is attractive to be used in the enhancement of 
Virtual Reality systems. 
The future of our work will be enriched with (i) further 
application of the method in 3D scenes; (ii) training the 
NNs with varying wall impedances and room geometries to 

predict sound fields in rooms with different materials and 
dimensions; (iii) using non-uniform sampling methods to 
reduce the large pre-calculation requirements of FEM; and 
(iv) combining high-frequency method, applying HRTFs to 
obtain the BRIRs, and conducting listening tests. 
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